Breast cancer was a prevalent form of cancer worldwide. Thermography, a method for diagnosing breast cancer, involves recording the thermal patterns of the breast. This article explores the use of a convolutional neural network (CNN) algorithm to extract features from a dataset of thermographic images. Initially, the CNN network was used to extract a feature vector from the images. Subsequently, machine learning techniques can be used for image classification. This study utilizes four classification methods, namely Fully connected neural network (FCnet), support vector machine (SVM), classification linear model (CLINEAR), and KNN, to classify breast cancer from thermographic images. The accuracy rates achieved by the FCnet, SVM, CLINEAR, and k-nearest neighbors (KNN) algorithms were 94.2%, 95.0%, 95.0%, and 94.1%, respectively. Furthermore, the reliability parameters for these classifiers were computed as 92.1%, 97.5%, 96.5%, and 91.2%, while their respective sensitivities were calculated as 95.5%, 94.1%, 90.4%, and 93.2%. These findings can assist experts in developing an expert system for breast cancer diagnosis.
Named Entity Recognition (NER), a core task in Information Extraction (IE) alongside Relation Extraction (RE), identifies and extracts entities like place and person names in various domains. NER has improved business processes in both public and private sectors but remains underutilized in government institutions, especially in developing countries like Indonesia. This study examines which government fields have utilized NER over the past five years, evaluates system performance, identifies common methods, highlights countries with significant adoption, and outlines current challenges. Over 64 international studies from 15 countries were selected using PRISMA 2020 guidelines. The findings are synthesized into a preliminary ontology design for Government NER.
The human brain has been described as a complex system. Its study by means of neurophysiological signals has revealed the presence of linear and nonlinear interactions. In this context, entropy metrics have been used to uncover brain behavior in the presence and absence of neurological disturbances. Entropy mapping is of great interest for the study of progressive neurodegenerative diseases such as Alzheimer’s disease. The aim of this study was to characterize the dynamics of brain oscillations in such disease by means of entropy and amplitude of low frequency oscillations from Bold signals of the default network and the executive control network in Alzheimer’s patients and healthy individuals, using a database extracted from the Open Access Imaging Studies series. The results revealed higher discriminative power of entropy by permutations compared to low-frequency fluctuation amplitude and fractional amplitude of low-frequency fluctuations. Increased entropy by permutations was obtained in regions of the default network and the executive control network in patients. The posterior cingulate cortex and the precuneus showed differential characteristics when assessing entropy by permutations in both groups. There were no findings when correlating metrics with clinical scales. The results demonstrated that entropy by permutations allows characterizing brain function in Alzheimer’s patients, and also reveals information about nonlinear interactions complementary to the characteristics obtained by calculating the amplitude of low frequency oscillations.
This paper reviews the emerging potential of mid-tier transit, articulating how a complex set of established and new factors could contribute both to better transit outcomes and the associated urban regeneration around station precincts. The analysis is based on two structured literature reviews, supported by insights from the authors’ original research. The first provides an overview of the established and new rationale for mid-tier technologies such as the established Light Rail Transit (LRT) and Bus Rapid Transit (BRT) as well as the new Trackless Tram Systems (TTS). The established role for mid-tier transit is now being given extra reasons for it to be a major focus of urban infrastructure especially due to the need for net zero cities. The second review, is a detailed consideration of established and new factors that can potentially improve patronage on mid-tier transit. The established factors of urban precinct design like stop amenities and improved accessibility and density around stations, are combined with new smart technology systems like advanced intelligent transport systems and real-time transport information for travellers, as well as new transport technologies such as micro-mobility and Mobility on Demand. Also explored are new processes with funding and development models that properly leverage land value capture, public private partnerships, and other entrepreneurial development approaches that are still largely not mainstreamed. All were found to potentially work, especially if done together, to help cities move into greater mid-tier transit.
Cross-border infrastructure projects offer significant economic and social benefits for the Asia-Pacific region. If the required investment of $8 trillion in pan-Asian connectivity was made in the region’s infrastructure during 2010–2020, the total net income gains for developing Asia could reach about $12.98 trillion (in 2008 US dollars) during 2010–2020 and beyond, of which more than $4.43 trillion would be gained during 2010–2020 and nearly $8.55 trillion after 2020. Indeed, infrastructure connectivity helps improve regional productivity and competitiveness by facilitating the movement of goods, services and human resources, producing economies of scale, promoting trade and foreign direct investments, creating new business opportunities, stimulating inclusive industrialization and narrowing development gaps between communities, countries or sub-regions. Unfortunately, due to limited financing, progress in the development of cross-border infrastructure in the region is low.
This paper examines the key challenges faced in financing cross-border projects and discusses the roles that different stakeholders—national governments, state-owned enterprises, private sector, regional entities, development financing institutions (DFIs), affected people and civil society organizations—can play in facilitating the development of cross-border infrastructure in the region. In particular, this paper highlights the major risks that deter private sector investments and FDIs and provides recommendations to address these risks.
This review provides an overview of the importance of nanoparticles in various fields of science, their classification, synthesis, reinforcements, and applications in numerous areas of interest. Normally nanoparticles are particles having a size of 100 nm or less that would be included in the larger category of nanoparticles. Generally, these materials are either 0-D, 1-D, 2-D, or 3-D. They are classified into groups based on their composition like being organic and inorganic, shapes, and sizes. These nanomaterials are synthesized with the help of top-down bottom and bottom-up methods. In case of plant-based synthesis i.e., the synthesis using plant extracts is non-toxic, making plants the best choice for producing nanoparticles. Several physicochemical characterization techniques are available such as ultraviolet spectrophotometry, Fourier transform infrared spectroscopy, the atomic force microscopy, the scanning electron microscopy, the vibrating specimen magnetometer, the superconducting complex optical device, the energy dispersive X-ray spectrometry, and X-ray photoelectron spectroscopy to investigate the nanomaterials. In the meanwhile, there are some challenges associated with the use of nanoparticles, which need to be addressed for the sustainable environment.
Copyright © by EnPress Publisher. All rights reserved.