In the past twenty years, market dynamics have had a substantial impact on different industrial sectors, ultimately influencing their level of competitiveness. The field of operation management in terms of halal logistics has gained considerable attention and recognition among scholars and researchers in the academic community, as evidenced by the growing body of literature in the field of management. This article presents a bibliometric examination of scholarly literature pertaining to the halal supply chain in the domain of business. In addition, bibliographic material is organized and analyzed through the utilization of software tools such as VOSviewer, R Studio, and Microsoft Excel. A comprehensive analysis was conducted on a dataset comprising 278 scholarly papers that had been indexed by Scopus. The process of identifying and categorizing relevant research on the topic was carried out using certain criteria, including journal publications, articles, authorship, and geographical origin. The results suggest a significant rise in scholarly investigations carried out in this specific domain during the previous two decades. Our study also acknowledges several countries as the most productive domains of halal supply chain studies. It is imperative to recognize, though, that scientific advancement continues in this field, as well as in all other areas of study, and that data undergoes significant changes over time. This article examines potential avenues for future research, incorporating quantitative analysis and collaborative inquiry undertaken by researchers.
Bagasse fiber from sugarcane waste is used with epoxy resin to make natural composites. The raw fibers are treated chemically to improve compatibility and adherence with the epoxy polymer. It’s anticipated that epoxy resin matrix composites reinforced with bagasse particles would work as a trustworthy replacement for conventional materials utilized in the building and automobile sectors. The amount and distribution of reinforcing particles inside the matrix are two factors that impact the composite’s strength. Furthermore, the precise proportion of reinforcing elements—roughly 20–30 weight percent—into the matrix plays a critical role in providing a noticeable boost in improving the properties of the composites. This research investigates the impact of reinforcing alkali-treated bagasse and untreated bagasse powder into an epoxy matrix on aspects of mechanical and morphological characteristics. The hand layup technique is used to create alkali-treated bagasse and untreated bagasse powder-reinforced epoxy composites. Composites are designed with six levels of reinforcement weight percentages (5%, 10%, 15%, 20%, 25%, and 30%). Microstructural analysis was performed using SEM and optical microscopes to assess the cohesion and dispersion of the reinforcing particles throughout the hybrid composites’ matrix phase. With reinforcement loading up to 20 wt%, the tensile strength, impact strength, and toughness of epoxy-alkali-treated bagasse and untreated bagasse powder-reinforced composites increased. In contrast, treated bagasse epoxy composites were superior to untreated epoxy composites in terms of efficacy. The results indicate that 20 wt% alkali bagasse powder provides better mechanical properties than other combinations.
In today’s manufacturing sector, high-quality materials that satisfy customers’ needs at a reduced cost are drawing attention in the global market. Also, as new applications are emerging, high-performance biocomposite products that complement them are required. The production of such high-performance materials requires suitable optimization techniques in the formulation/process design, not simply mixing natural fibre/filler, additives, and plastics, and characterization of the resulting biocomposites. However, a comprehensive review of the optimization strategies in biocomposite production intended for infrastructural applications is lacking. This study, therefore, presents a detailed discussion of the various optimization approaches, their strengths, and weaknesses in the formulation/process parameters of biocomposite manufacturing. The report explores the recent progress in optimization techniques in biocomposite material production to provide baseline information to researchers and industrialists in this field. Therefore, this review consolidates prior studies to explore new areas.
During the "14th Five Year Plan" period, in the face of the overall situation of the great rejuvenation strategy of the Chinese nation and the unprecedented changes in the world in a century, sports need to base itself on the new development stage, implement the new development concept, and build a Dual circulation. College students, as reserve talents in various fields of our country, building a good college sports culture is crucial to the development of sports in our country This article analyzes the role of university sports stars in the construction of university sports culture from the perspective of spiritual culture, and puts forward suggestions on how to better play the role of university sports stars in the construction of university sports culture, including improving the material foundation, selecting suitable university sports stars, promoting the comprehensive improvement of the comprehensive quality of university sports stars, standardizing and refining the work of sports related departments To provide ideas for the construction of sports culture in universities, we should organize more sports competitions and diverse sports activities, do a good job in promoting sports stars in universities, and shape distinctive sports projects around the expertise of sports stars in universities.
The challenge of rural electrification has become more challenging today than ever before. Grid-connected and off-grid microgrid systems are playing a very important role in this problem. Examining each component’s ideal size, facility system reactions, and other microgrid analyses, this paper proposes the design and implementation of an off-grid hybrid microgrid in Chittagong and Faridpur with various load dispatch strategies. The hybrid microgrids with a load of 23.31 kW and the following five dispatch algorithms have been optimized: (i) load following, (ii) HOMER predictive, (iii) combined dispatch, (iv) generator order, and (v) cycle charging dispatch approach. The proposed microgrids have been optimized to reduce the net present cost, CO2 emissions, and levelized cost of energy. All five dispatch strategies for the two microgrids have been analyzed in HOMER Pro. Power system reactions and feasibility analyses of microgrids have been performed using ETAP simulation software. For both the considered locations, the results propound that load-following is the outperforming approach, which has the lowest energy cost of $0.1728/kWh, operational cost of $2944.13, present cost of $127,528.10, and CO2 emission of 2746 kg/year for the Chittagong microgrid and the lowest energy cost of $0.2030/kWh, operating cost of $3530.34, present cost of 149,287.30, and CO2 emission of 3256 kg/year for the Faridpur microgrid with a steady reaction of the power system.
The Western capitalist system is an important part of the economy and society of the contemporary world, and it has played a huge role in the past few centuries. Nonetheless, with the continuous development of globalization, technological revolution and social change, the Western capitalist system is also facing a series of difficulties and new changes. This paper aims to explore the dilemma facing the Western capitalist system today, and to analyze and discuss the new changes.
Copyright © by EnPress Publisher. All rights reserved.