This study examines the impact of Human Resource Management (HRM) practices, specifically Compensation, Job Design, and Training, on employee outcomes, including Engagement, Efficiency, Customer Satisfaction, and Innovation within an organizational framework. Employing a quantitative research methodology, the study utilizes a cross-sectional survey design to collect data from employees within a public service organization, analyzing the relationships through structural equation modelling. Findings reveal significant positive relationships between HRM practices and employee performance metrics, highlighting the pivotal role of Employee Engagement as a mediator in enhancing organizational effectiveness. Specifically, Compensation and Job Design significantly influence Employee Engagement and Efficiency, while training is crucial for driving Innovation and Customer Satisfaction. The practical implications of this research underscore the necessity for organizations to adopt integrated and strategic HRM frameworks that foster employee engagement to drive performance outcomes. These insights are vital for HR practitioners and organizational leaders aiming to enhance workforce productivity and innovation. In conclusion, the study contributes valuable perspectives to the HRM literature, advocating for holistic HRM practices that optimize employee well-being and ensure organizational competitiveness. Future research is encouraged to explore these dynamics across various sectors and cultural contexts to validate the generalizability of the findings.
Surveys are one of the most important tasks to be executed to get valued information. One of the main problems is how the data about many different persons can be processed to give good information about their environment. Modelling environments through Artificial Neural Networks (ANNs) is highly common because ANN’s are excellent to model predictable environments using a set of data. ANN’s are good in dealing with sets of data with some noise, but they are fundamentally surjective mathematical functions, and they aren’t able to give different results for the same input. So, if an ANN is trained using data where samples with the same input configuration has different outputs, which can be the case of survey data, it can be a major problem for the success of modelling the environment. The environment used to demonstrate the study is a strategic environment that is used to predict the impact of the applied strategies to an organization financial result, but the conclusions are not limited to this type of environment. Therefore, is necessary to adjust, eliminate invalid and inconsistent data. This permits one to maximize the probability of success and precision in modeling the desired environment. This study demonstrates, describes and evaluates each step of a process to prepare data for use, to improve the performance and precision of the ANNs used to obtain the model. This is, to improve the model quality. As a result of the studied process, it is possible to see a significant improvement both in the possibility of building a model as in its accuracy.
Climate change is the most important environmental problem of the 21st century. Severe climate changes are caused by changes in the average temperature and rainfall can affect economic sectors. On the other hand, the impact of climate change on countries varies depending on their level of development. Therefore, the aim of this paper is to investigate the relationship between climate changes and economic sectors in developed and developing countries for the period 1990–2021. For this purpose, a novel approach based on wavelet analysis and SUR model has been used. In this case, first all variables are decomposed into different frequencies (short, medium and long terms) using wavelet decomposition and then a SUR model is applied for the examination of climate change effects on agriculture, industry and services sectors in developed and developing countries. The findings indicate that temperature and rainfall have a significant negative and positive relationship with the agriculture, industry and services sectors in developed and developing countries, respectively. But severity of the negative effects is greater in the agricultural and industrial sectors in all frequencies (short, medium and long terms) compared to service sector. Furthermore, the severity of the positive effects is greater in the agricultural sector in all frequencies of developing countries compared to the industrial and services sectors. Finally, developing countries are more vulnerable to climate change in all sectors compared to developed countries.
This study aims to identify the risk factors causing the delay in the completion schedule and to determine an optimization strategy for more accurate completion schedule prediction. A validated questionnaire has been used to calculate a risk rating using the analytical hierarchy process (AHP) method, and a Monte Carlo simulation on @RISK 8.2 software was employed to obtain a more accurate prediction of project completion schedules. The study revealed that the dominant risk factors causing project delays are coordination with stakeholders and changes in the scope of work/design review. In addition, the project completion date was determined with a confidence level of 95%. All data used in this study were obtained directly from the case study of the Double-Double Track Development Project (Package A). The key result of this study is the optimization of a risk-based schedule forecast with a 95% confidence level, applicable directly to the scheduling of the Double-Double Track Development Project (Package A). This paper demonstrates the application of Monte Carlo Simulation using @RISK 8.2 software as a project management tool for predicting risk-based-project completion schedules.
Despite the surge of publication of chatbots in the recent years in the field of education, we have little to know how this area has been researched so far, and the metrics of this type of research is still not known. To address such gap, this article offers a descriptive bibliometric study of chatbot research in education, aiming at presenting bibliometric analysis on articles on chatbots in education that were published in journals indexed in the Web of Science (WOS) database specifically Social Science Citation Index (SSCI) and Science Citation Index Expanded (SCIE) between 2016 and 2023. Descriptive bibliometric analysis was used to examine the data gathered from the chosen publications. including the annual number of articles and citations, the most productive author, countries with the highest publication output, productive affiliations, funding organizations, and publication sources. The bulk of the articles on chatbots in education, according to our dataset, were published between 2016 and 2023. The United States of America tops the list of countries regarding research productivity. The United Kingdom and China were ranked as most second and third productive countries, in terms of publication outputs. “Luke Kutszik Fryer emerged as the most productive author in this research domain in terms of the number of publications.” The University of Hong Kong had the highest number of publications among affiliations, indicating their significant contribution to the field. Additionally, the journal “Computers in Human Behavior” stood out with the highest number of publications per year, highlighting its relevance in publishing research on chatbots in education. This research offers valuable insights and a roadmap for prospective researchers, pinpointing critical areas where success can be attained in the study of chatbots in education.
The research aims to explore the role of Electronic Human Resources Management on employee performance through employee engagement. The present research’s population included all Jordanian Service and Public Administration Commission employees. The data was collection through a questionnaire that was administered for the study Population. 262 questionnaires collected from employees working in Service and Public Administration Commission in Jordan valid for statistics. The analysis of the data was undertaken through the use of SEM (structural equation modelling). The results showed that E-HRM has a direct impact on employee performance and employee engagement. Consequently, the indication from the results was that a significant role in mediation within the effect that E-HRM had upon employee performance been played by employee engagement. The conclusion reached was that transformation of the public sector through implementation of technological HRM methods fosters employee engagement, with that being a key driver for the alignment of employee behaviors for the achievement of high levels of employee performance.
Copyright © by EnPress Publisher. All rights reserved.