The hospital is a complex system, which evolving practices, knowledge, tools, and risks. This study aims to assess the level of knowledge about risks at Hassan II Hospital among healthcare workers (HCWs) working in three COVID-19 units. The action-research method was adopted to address occupational risks associated with the pandemic. The study involved 82 healthcare professionals in the three COVID-19 units mentioned above. All participants stated they were familiar with hospital risks. Seventy-four HCPs reported no knowledge of how to calculate risk criticality, while eight mentioned the Occurrence rating, Severity rating, and Detection rating (OSD) method, considering Occurrence rating, Severity rating, and Detection rating as key elements for risk classification. Staff indicated that managing COVID-19 patients differs from other pathologies due to the pandemic’s evolving protocols. There is a significant lack of information among healthcare professionals about risks associated with COVID-19, highlighting the need for a hospital risk management plan at a subsequent stage.
Personal data privacy regulation and mitigation are critical in implementing financial technology (fintech). Problems with fintech users’ data might result from data breaches, improper usage, and trade. Issues with personal data will result in financial losses, crimes, and violations of personal information. This legal research used three approaches: conceptual, comparative, and statute-based. In order to implement the statutory method, all laws and regulations pertaining to the legal concerns of information technology, fintech, personal data security, and protection are reviewed. Due to the nature of the sources of data, this study mainly used literature study and document observation to collect the data. Then, legal interpretation, legal reasoning, and legal argumentation are all included in the qualitative juridical analysis. This article recommends two strategies that Indonesia should take to provide personal data protection, including: 1) establishing the Personal Data Protection Commission (PDPC); and 2) improving the financial literacy of consumers.
Nowadays, customer service in telecommunications companies is often characterized by long waiting times and impersonal responses, leading to customer dissatisfaction, increased complaints, and higher operational costs. This study aims to optimize the customer service process through the implementation of a Generative AI Voicebot, developed using the SCRUMBAN methodology, which comprises seven phases: Objectives, To-Do Tasks, Analysis, Development, Testing, Deployment, and Completion. An experimental design was used with an experimental group and a control group, selecting a representative sample of 30 customer service processes for each evaluated indicator. The results showed a 34.72% reduction in the average time to resolve issues, a 33.12% decrease in service cancellation rates, and a 97% increase in customer satisfaction. The implications of this research suggest that the use of Generative AI In Voicebots can transform support strategies in service companies. In conclusion, the implementation of the Generative AI Voicebot has proven effective in significantly reducing resolution time and markedly increasing customer satisfaction. Future research is recommended to further explore the SCRUMBAN methodology and extend the use of Generative AI Voicebots in various business contexts.
This research presents a novel approach utilizing a self-enhanced chimp optimization algorithm (COA) for feature selection in crowdfunding success prediction models, which offers significant improvements over existing methods. By focusing on reducing feature redundancy and improving prediction accuracy, this study introduces an innovative technique that enhances the efficiency of machine learning models used in crowdfunding. The results from this study could have a meaningful impact on how crowdfunding campaigns are designed and evaluated, offering new strategies for creators and investors to increase the likelihood of campaign success in a rapidly evolving digital funding landscape.
This study aims to assess the efficacy of speech-to-text (STT) technology in improving the writing abilities of special education pupils in Saudi Arabia. A deliberate sample of 150 special education college students was selected, with participants randomly allocated to either an experimental group employing STT technology or a control group using traditional writing methods. The study utilized a comprehensive approach, which included standardized writing assessments, questionnaires, and statistical analyses such as t-tests, correlation, regression, ANOVA, and ANCOVA. The results demonstrate a substantial enhancement in writing skills among the experimental group utilizing Speech-to-Text (STT) technology. The findings contribute to the discussion on assistive technology in special education and offer practical recommendations for educators and policymakers.
This paper presents a practical approach to empowering software entrepreneurship in Saudi Arabia through a unique course offered by the Software Engineering department at Prince Sultan University. The course, SE495 Emergent Topics in Software Engineering: Software Entrepreneurship, combines software engineering and entrepreneurship to equip students with the necessary skills to develop innovative software solutions that solve real-world problems. The course covers a range of topics, including platform development, market research, and pitching to investors, and features guest speakers from the industry. By the end of the course, students will have gained a deep understanding of the software development process and its intersection with entrepreneurship and will be able to develop a working prototype of a software solution that solves a real-world problem. The course’s practical approach ensures that students are well-prepared to navigate the complexities of the digital and software sectors and succeed in an ever-changing business landscape.
Copyright © by EnPress Publisher. All rights reserved.