This study addresses the critical issue of employee turnover intention within Malaysia’s manufacturing sector, focusing on the semiconductor industry, a pivotal component of the inclusive economy growth. The research aims to unveil the determinants of employee turnover intentions through a comprehensive analysis encompassing compensation, career development, work-life balance, and leadership style. Utilizing Herzberg’s Two-Factor Theory as a theoretical framework, the study hypothesizes that motivators (e.g., career development, recognition) and hygiene factors (e.g., compensation, working conditions) significantly influence employees’ intentions to leave. The quantitative research methodology employs a descriptive correlation design to investigate the relationships between the specified variables and turnover intention. Data was collected from executives and managers in northern Malaysia’s semiconductor industry, revealing that compensation, rewards, and work-life balance are significant predictors of turnover intention. At the same time, career development and transformational leadership style show no substantial impact. The findings suggest that manufacturing firms must reevaluate their compensation strategies, foster a conducive work-life balance, and consider a diverse workforce’s evolving needs and expectations to mitigate turnover rates. This study contributes to academic discourse by filling gaps in current literature and offers practical implications for industry stakeholders aiming to enhance employee retention and organizational competitiveness.
This study investigates the application and effectiveness of modern teaching techniques in improving reading literacy among elementary school students in Kazakhstan. In the rapidly evolving educational landscape, the integration of innovative pedagogical strategies is essential to foster student reading skills and general literacy. This study aims to explore how these modern teaching techniques can be applied to improve reading literacy among elementary school students in Kazakhstan. The study sample includes 64 respondents to the research. The key modern teaching techniques explored in this study include the use of digital learning tools, interactive reading sessions, differentiated instruction, and collaborative learning activities. The findings reveal significant improvements in reading literacy among students exposed to these techniques, highlighting the potential of modern pedagogy to bridge literacy gaps and promote educational equity. Furthermore, the study discusses the challenges and opportunities to implement these techniques within the Kazakhstani educational system. The results provide valuable information for educators, policymakers, and stakeholders aiming to improve reading literacy through innovative teaching practices.
In this paper, we assess the results of experiment with different machine learning algorithms for the data classification on the basis of accuracy, precision, recall and F1-Score metrics. We collected metrics like Accuracy, F1-Score, Precision, and Recall: From the Neural Network model, it produced the highest Accuracy of 0.129526 also highest F1-Score of 0.118785, showing that it has the correct balance of precision and recall ratio that can pick up important patterns from the dataset. Random Forest was not much behind with an accuracy of 0.128119 and highest precision score of 0.118553 knit a great ability for handling relations in large dataset but with slightly lower recall in comparison with Neural Network. This ranked the Decision Tree model at number three with a 0.111792, Accuracy Score while its Recall score showed it can predict true positives better than Support Vector Machine (SVM), although it predicts more of the positives than it actually is a majority of the times. SVM ranked fourth, with accuracy of 0.095465 and F1-Score of 0.067861, the figure showing difficulty in classification of associated classes. Finally, the K-Neighbors model took the 6th place, with the predetermined accuracy of 0.065531 and the unsatisfactory results with the precision and recall indicating the problems of this algorithm in classification. We found out that Neural Networks and Random Forests are the best algorithms for this classification task, while K-Neighbors is far much inferior than the other classifiers.
This study explores the intricate relationship between emotional cues present in food delivery app reviews, normative ratings, and reader engagement. Utilizing lexicon-based unsupervised machine learning, our aim is to identify eight distinct emotional states within user reviews sourced from the Google Play Store. Our primary goal is to understand how reviewer star ratings impact reader engagement, particularly through thumbs-up reactions. By analyzing the influence of emotional expressions in user-generated content on review scores and subsequent reader engagement, we seek to provide insights into their complex interplay. Our methodology employs advanced machine learning techniques to uncover subtle emotional nuances within user-generated content, offering novel insights into their relationship. The findings reveal an inverse correlation between review length and positive sentiment, emphasizing the importance of concise feedback. Additionally, the study highlights the differential impact of emotional tones on review scores and reader engagement metrics. Surprisingly, user-assigned ratings negatively affect reader engagement, suggesting potential disparities between perceived quality and reader preferences. In summary, this study pioneers the use of advanced machine learning techniques to unravel the complex relationship between emotional cues in customer evaluations, normative ratings, and subsequent reader engagement within the food delivery app context.
Entrepreneurship education plays a crucial role in improving college students' entrepreneurial skills. With the significant momentum gained by digital entrepreneurship, there is an urgent need for digital transformation in entrepreneurship education. However, entrepreneurship education digital transformation (EEDT) is developing in a rapid but fragmented manner, which requires more systematic guidance. This study aims to assess the current research themes and formulate a framework for entrepreneurship education digital transformation. The research employs a systematic literature review and a theory triangulation method. According to the review’s outcome, which focused on 56 articles published between 2018 and 2023, the researcher constructed a conceptual framework for entrepreneurship education digital transformation. To test the construct validity of the framework, the researcher modified it twice through theory triangulation, following the guidelines of the entrepreneurship education ecosystem theory and the education digital transformation framework. This study offers recommendations for research and practice in digital transformation of entrepreneurship education, encompassing a holistic strategy, new educational approaches, novel curriculum designs, and the enhancement of digital literacy among entrepreneurship teachers.
This paper presents a numerical method for solving a nonlinear age-structured population model based on a set of piecewise constant orthogonal functions. The block-pulse functions (BPFs) method is applied to determine the numerical solution of a non-classic type of partial differential equation with an integral boundary condition. BPFs duo to the simple structure can efficiently approximate the solution of systems with local or non-local boundary conditions. Numerical results reveal the accuracy of the proposed method even for the long term simulations.
Copyright © by EnPress Publisher. All rights reserved.