Journal Browser
Search
Numerical solution of age-structured population models using block pulse functions
Zakieh Avazzadeh
Mohammad Heydari
International Journal of Mathematics and Systems Science 2025, 8(2); https://doi.org/10.24294/ijmss194
Submitted:24 Jan 2018
Accepted:16 Apr 2019
Published:29 Dec 2025
Abstract

This paper presents a numerical method for solving a nonlinear age-structured population model based on a set of piecewise constant orthogonal functions. The block-pulse functions (BPFs) method is applied to determine the numerical solution of a non-classic type of partial differential equation with an integral boundary condition. BPFs duo to the simple structure can efficiently approximate the solution of systems with local or non-local boundary conditions. Numerical results reveal the accuracy of the proposed method even for the long term simulations.

MSC

35Q92; 65Nxx; 94A11; 34K28.

References
1. Abia LM, Angulo O, Lopez-Marcos JC. Age-structured population dynamics models and their numerical solutions. Ecological Modelling. 2005; 188: 112–136. doi: 10.1016/j.ecolmodel.2005.05.007
2. Angulo O, López-Marcos JC, López-Marcos MA, et al. A numerical method for nonlinear age-structured population models with finite maximum age. Journal of Mathematical Analysis and Applications. 2010; 361(1): 150–160. doi: 10.1016/j.jmaa.2009.09.001
3. Avazzadeh Z, Heydari M. Chebyshev Cardinal Functions for Solving Age-Structured Population Models. International Journal of Applied and Computational Mathematics. 2017; 3(3): 2139–2149. doi: 10.1007/s40819-016-0236-x
4. Avazzadeh Z, Heydari M. Haar wavelet method for solving nonlinear age-structured population models. International Journal of Biomathematics. 2017; 10(08): 1750114. doi: 10.1142/s1793524517501145
5. Cui M, Chen Z. The exact solution of nonlinear age-structured population model. Nonlinear Analysis: Real World Applications. 2007; 8(4): 1096–1112. doi: 10.1016/j.nonrwa.2006.06.004
6. Cusulin C, Gerardo-Giorda L. A numerical method for spatial diffusion in age-structured populations. Numerical Methods for Partial Differential Equations. 2010; 26: 253–273. doi: 10.1002/num.20425
7. Kappel F, Zhang KP. Approximation of Linear Age-Structured Population Models Using Legendre Polynomials. Journal of Mathematical Analysis and Applications. 1993; 180(2): 518–549. doi: 10.1006/jmaa.1993.1414
8. Koçak H, Yıldırım A. An efficient algorithm for solving nonlinear age-structured population models by combining homotopy perturbation and Padé techniques. International Journal of Computer Mathematics. 2011; 88(3): 491–500. doi: 10.1080/00207160903477159
9. Kythe PK, Schäferkotter MR. Handbook of Computational Methods for Integration. Chapman and Hall/CRC; 2005. doi: 10.1201/9780203490303
10. Li X. Variational iteration method for nonlinear age-structured population models. Computers & Mathematics with Applications. 2009; 58(11–12): 2177–2181. doi: 10.1016/j.camwa.2009.03.060
11. Datta KB, Mohan BM. Mohan, Orthogonal Functions in Systems and Control. World Scientific; 1995. doi: 10.1142/2476
12. Deb A, Sarkar G, Bhattacharjee M, et al. All-integrator approach to linear SISO control system analysis using block pulse functions (BPF). Journal of the Franklin Institute. 1997; 334B(2): 319–335. doi: 10.1016/S0016-0032(96)00054-3
13. Deb A, Sarkar G, Sen SK. Block pulse functions, the most fundamental of all piecewise constant basis functions. International Journal of Systems Science. 1994; 25(2): 351–363. doi: 10.1080/00207729408928964
14. Jiang Z, Schaufelberger W, eds. Block Pulse Functions and Their Applications in Control Systems, Lecture Notes in Control and Information Sciences. Springer Berlin Heidelberg; 1992. doi: 10.1007/bfb0009162
15. Harmuth HF. Transmission of Information by Orthogonal Functions. Springer, Springer Science & Business Media; 2013.
16. Hatamzadeh-Varmazyar S, Masouri Z, Babolian E. Numerical method for solving arbitrary linear differential equations using a set of orthogonal basis functions and operational matrix. Applied Mathematical Modelling. 2015. doi: 10.1016/j.apm.2015.04.048
17. Hatamzadeh-Varmazyar S, Masouri Z. Numerical method for analysis of one- and two-dimensional electromagnetic scattering based on using linear Fredholm integral equation models. Mathematical and Computer Modelling. 2011; 54(9–10): 2199–2210. doi: 10.1016/j.mcm.2011.05.028
18. Hatamzadeh-Varmazyar S, Naser-Moghadasi M, Masouri Z. A moment method simulation of electromagnetic scattering from conducting bodies. Progress In Electromagnetics Research. 2008; 81: 99–119. doi: 10.2528/pier07122502
19. Nikooeinejad Z, Heydari M. Nash equilibrium approximation of some class of stochastic differential games: A combined Chebyshev spectral collocation method with policy iteration. Journal of Computational and Applied Mathematics. 2019; 362: 41–54. doi: 10.1016/j.cam.2019.05.014
20. Hosseini MM, Mohyud-Din ST, Hosseini SM, et al. Study on hyperbolic telegraph equation by using homotopy analysis method. Study Nonlinear Science. 2010; 1: 50–56.
21. Hatamzadeh-Varmazyar S, Naser-Moghadasi M, Babolian E, et al. Numerical approach to survey the problem of electromagnetic scattering from resistive strips based on using a set of orthogonal basis functions. Progress In Electromagnetics Research. 2008; 81: 393–412. doi: 10.2528/pier08012502
22. Rao GP, ed. Piecewise Constant Orthogonal Functions and Their Application to Systems and Control. Springer-Verlag; 1983. doi: 10.1007/bfb0041228
23. Sannuti P. Analysis and synthesis of dynamic systems via block-pulse functions. Proceedings of the Institution of Electrical Engineers. 1977; 124(6): 569. doi: 10.1049/piee.1977.0119
24. CHI-HSU W. Generalized block-pulse operational matrices and their applications to operational calculus. International Journal of Control. 1982; 36(1): 67–76. doi: 10.1080/00207178208932875
25. Maleknejad K, Khodabin M, Rostami M. A numerical method for solving m-dimensional stochastic Itô–Volterra integral equations by stochastic operational matrix. Computers & Mathematics with Applications. 2012; 63(1): 133–143. doi: 10.1016/j.camwa.2011.10.079
© 2025 by the EnPress Publisher, LLC. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Copyright © by EnPress Publisher. All rights reserved.

TOP