This study aims to identify and the implementation of ASN Management policies on career development aspects based on the merit system in the West Java Provincial Government and 6 Regency/City Governments in West Java Province. The failure of the institutionalization of the meritocratic system in ASN career development is partly triggered by the symptoms of the appointment or selection of officials in the central and regional levels not based on their professionalism or competence except for subjective considerations, political ties, close relationships and even bribery. This study uses a qualitative method with a descriptive approach. The operationalization concept in this study uses Merilee S. Grindle's Policy Implementation theory which consists of dimensions of policy content and its implementation context. The factors that cause the implementation of the policy to be less than optimal include: 1. Uneven understanding of meritocracy; 2. Slowness/unpreparedness in synchronizing central and regional rules/policies; 3. The information integration system between the center and regions has not yet been implemented; 4. Limited supporting infrastructure; 5. Limited permits for related officials; 6. Transparency; 7. Collaboration across units/agencies; 8. External intervention; 9. Use of information systems/technology. To optimize these factors, an Accelerator of Governmental Unit's Success (AGUS) model was created, which is a development of the Grindle policy implementation model with the novelty of adding things that influence implementation, including top leader's commitment and wisdom, effectiveness of talent placement, on-point human development, technology savvy, cross-unit/agency collaboration, and monitoring and evaluation processes.
With the requirements of New English Curriculum Standards, English teaching has shifted towards organising content thematically, focusing not only on the transmission of linguistic knowledge but also on the improvement of students' comprehensive quality during language learning. This evolution undoubtedly raises higher demands on English instruction. Unit-based integrated teaching, as an innovative pedagogical model, is characterised by its holistic, interconnected, progressive, and comprehensive features. It can help students to build a correlated knowledge network facilitates the establishment of connections between disparate pieces of knowledge, deepens students' understanding and enhances their retention, improves their overall linguistic competence and learning ability, so as to foster the comprehensive development of core literacy. Therefore, this article takes the teaching of English in compulsory education as an example, and explores and elaborates on the design and implementation path of integrated teaching of English units under the new curriculum standards from four aspects: teaching objectives, teaching content, teaching process, and teaching evaluation, in order to provide reference for promoting integrated teaching of English units in compulsory education.
In the wake of the COVID-19 pandemic, the prevalence of online education in primary education has exhibited an upward trajectory. Relative to traditional learning environments, online instruction has evolved into a pivotal pedagogical modality for contemporary students. Thus, to comprehensively comprehend the repercussions of environmental changes on students’ psychological well-being in the backdrop of prolonged online education, this study employs an innovative methodology. Founded upon three elemental feature sequences—images, acoustics, and text extracted from online learning data—the model ingeniously amalgamates these facets. The fusion methodology aims to synergistically harness information from diverse perceptual channels to capture the students’ psychological states more comprehensively and accurately. To discern emotional features, the model leverages support vector machines (SVM), exhibiting commendable proficiency in handling emotional information. Moreover, to enhance the efficacy of psychological well-being prediction, this study incorporates an attention mechanism into the traditional Convolutional Neural Network (CNN) architecture. By innovatively introducing this attention mechanism in CNN, the study observes a significant improvement in accuracy in identifying six psychological features, demonstrating the effectiveness of attention mechanisms in deep learning models. Finally, beyond model performance validation, this study delves into a profound analysis of the impact of environmental changes on students’ psychological well-being. This analysis furnishes valuable insights for formulating pertinent instructional strategies in the protracted context of online education, aiding educational institutions in better addressing the challenges posed to students’ psychological well-being in novel learning environments.
The study aims to investigate and analyse the social media, precisely the Instagram activity of several hotels in the city of Yogyakarta, Indonesia. Having been the second most popular destination besides Bali, it is mainly dominated by domestic tourism. Although several governmental institutions exist, the study focuses on the hotel’s activity only. The main purpose was to find, that after the classification of the posts, whether there is a more positive effect of one as opposed to the other type of posts. In addition, it was also important to see if with the time advancing positive effect of likes and comments appear and the relation of hashtags, likes and comments. Data was collected between 1st of January 2023. and 15th of July 2024. The first step was to collect posts done by the suppliers and then the posts were classified. Also, the number of hashtags used were collected. Second step was to collect the response from the demand side by gathering their likes and comments. Data then was analysed with SPSS 24 and JASP program. Results show that while there is no significance on increasing likes and comments with the months advancing, but in terms of the type of the posts there is. Promotional posts with other suppliers tend to bring a lot more comments and likes than self-promotional posts. This study’s main purpose to analyse through social media posts to enhance online networking by local suppliers promoting each other’s products.
To achieve the Paris Agreement's temperature goal, greenhouse gas emissions should be reduced as soon as, and by as much, as possible. By mid-century, CO2 emissions would need to be cut to zero, and total greenhouse gases would need to be net zero just after mid-century. Achieving carbon neutrality is impossible without carbon dioxide removal from the atmosphere through afforestation/reforestation. It is necessary to ensure carbon storage for a period of 100 years or more. The study focuses on the theoretical feasibility of an integrated climate project involving carbon storage, emissions reduction and sequestration through the systemic implementation of plantation forestry of fast-growing eucalyptus species in Brazil, the production of long-life wood building materials and their deposition. The project defines two performance indicators: a) emission reduction units; and b) financial costs. We identified the baseline scenarios for each stage of the potential climate project and developed different trajectory options for the project scenario. Possible negative environmental and reputational effects as well as leakages outside of the project design were considered. Over 7 years of the plantation life cycle, the total CO2 sequestration is expected to reach 403 tCO2∙ha−1. As a part of the project, we proposed to recycle or deposit for a long term the most part of the unused wood residues that account for 30% of total phytomass. The full project cycle can ensure that up to 95% of the carbon emissions from the grown wood will be sustainably avoided.
We report on the measurement of the response of Rhodamine 6G (R6G) dye to enhanced local surface plasmon resonance (LSPR) using a plasmonic-active nanostructured thin gold film (PANTF) sensor. This sensor features an active area of approximately ≈ 2.5 × 1013 nm2 and is immobilized with gold nanourchins (GNU) on a thin gold film substrate (TGFS). The hexane-functionalized TGFS was immobilized with a 90 nm diameter GNU via the strong sulfhydryl group (SH) thiol bond and excited by a 637 nm Raman probe. To collect both Raman and SERS spectra, 10 μL of R6G was used at concentrations of 1 μM (6 × 1012 molecules) and 10 mM (600 × 1014 molecules), respectively. FT-NIR showed a higher reflectivity of PANTF than TGFS. SERS was performed three times at three different laser powers for TGFS and PANTF with R6G. Two PANTF substrates were prepared at different GNU incubation times of 10 and 60 min for the purpose of comparison. The code for processing the data was written in Python. The data was filtered using the filtfilt filter from scipy.signals, and baseline corrected using the Improved Asymmetric Least Squares (ISALS) function from the pybaselines.Whittaker library. The results were then normalized using the minmax_scale function from sklearn.preprocessing. Atomic force microscopy (AFM) was used to capture the topography of the substrates. Signals exhibited a stochastic fluctuation in intensity and shape. An average corresponding enhancement factor (EF) of 0.3 × 105 and 0.14 × 105 was determinedforPANTFincubated at 10 and 60 min, respectively.
Copyright © by EnPress Publisher. All rights reserved.