This study delves into the role of pig farming in advancing Sustainable Development Goal (SDG) 8—Decent work and economic growth in Buffalo City, Eastern Cape. The absence of meaningful employment opportunities and genuine economic progress has remained a significant economic obstacle in South Africa for an extended period. Through a mixed-method approach, the study examines the transformative impact of pig farming as an economic avenue in achieving SDG 8. Through interviews and questionnaires with employed individuals engaged in pig farming in Buffalo City, the study further examines pig farming’s vital role as a source of decent work and economic growth. The study reveals inadequate government support and empowerment for pig farming in Buffalo City despite pig farming’s resilience and potential in mitigating socio-economic vulnerabilities and supporting community’s livelihoods. To enhance pig farming initiatives, this study recommends government’s prioritization of an enabling environment and empowerment measures for the thriving of pig farming in Buffalo City. By facilitating supportive policies and infrastructures, the government can empower locals in Buffalo City to leverage pig farming’s potential in achieving SDG 8.
The relationship between aid and corruption remains ambiguous. On the one hand, aid may benefit a country if the aid management system runs efficiently and transparently. On the other hand, aid tends to create new problems, namely corruption, especially in developing countries. This research examines the aid-corruption paradox in Indonesian provinces from a spatial perspective. The data was obtained from the Indonesian Ministry of Finance, the National Development Planning Agency of Indonesia, the Corruption Eradication Commission of Indonesia, and the Electronic Procurement Service, referring to 34 Indonesian provinces between 2011 and 2019. The research applies the spatial panel method and uses Haversine distance to construct the weighted matrix. The spatial error model (SEM) is the best for Model 1 (Grants) and Model 2 (Loans) and the best corruption model in Model 3 (Gratification). The spatial autoregressive model (SAR) is the best approach for Model 4 (Public Complaints) and Model 5 (Corruption). The findings show that there is no spatial dependence between provinces in Indonesia in terms of grants or loans. However, corruption in Indonesia is widespread.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
Given the importance of Information Communication Technology (ICT) in stimulating stock market development, many researchers have investigated their influences on the developed markets and high-income economies. The aim of this study is to examine the impact of ICT diffusion on stock market development for a panel of 17 selected emerging countries over the period 1990–2020 and employed the system-generalized method of moments (S-GMM) to test its objective. Three stock market development indicators are also used, namely: stock market capitalization (SMC), stock market total value traded (SMTT), and stock market turnover (SMT). Three ICT indicators are also employed, namely: Fixed telephone subscriptions (FTS), Individuals using the Internet (IUI), and Mobile cellular subscriptions (MCS). Three financial development indicators (deposit money among bank assets (DMB), liquid liabilities (LLB), and private credit by deposit money bank (PCM)) were employed as control variables. In its findings, all selected ICT dynamics positively affect stock market development and its constituents. Secondly, no proof was confirmed in relation to the impact of fixed telephone and stock market development with its elements. Thirdly, evidence of a positive relationship is sparingly apparent in financial development and its components. Fourthly, compared with fixed telephone, internet users more positively and significantly affect stock market development indicators. Policy implications are discussed.
Dredging and reclamation operations are pivotal aspects of coastal engineering and land development. Within these tasks lie potential hazards for personnel operating dredging machinery and working within reclamation zones. Due to the specialized nature of the work environment, which deviates from conventional workplace settings, the risk of workplace accidents is significantly heightened. The aim of this study is to conduct a comprehensive risk analysis of the safety aspects related to dredging and reclamation activities, with the goal of enhancing safety and minimizing the frequency and severity of potential dangers. This research comprises a thorough risk analysis, integrating meticulous hazard identification from sample projects and literature reviews. It involves risk assessment by gathering insights from experts with direct working experience and aims to assess potential risks. The study focuses on defining effective risk management strategies, exemplified through a case study of a nearshore construction project in Thailand. The study identified numerous high and very high-risk factors in the assessment and analysis of occupational safety in dredging and reclamation work. Consequently, a targeted response was implemented to control and mitigate these risks to an acceptable level. The outcome of this study will provide a significant contribution to the advancement of guidelines and best practices for improving the safety of dredging and reclamation operations.
This study investigates the impact of toll road construction on 59 micro, small, and medium enterprises in Kampar, Pekanbaru, and Dumai cities. The research aims to analyze the economic and environmental effects of infrastructure expansion on businesses’ profitability and sustainability, providing insights for policymakers and stakeholders to develop mitigation strategies to support MSMEs amidst ongoing infrastructure development. Structural equation modeling, spatial environmental impact analysis, and qualitative data analysis using five-level qualitative data analysis (FL-QDA) were all used together in a mixed-methods approach. Data collection involved observations, interviews, questionnaires, and geospatial analysis, including the use of a Geo-Information System (GIS) supported by drone reconnaissance to map affected areas. The study revealed that the toll roads significantly enhanced connectivity and economic growth but also negatively impacted local economies (β = 0.32, R2 = 0.60, P-value ≤ 0.05). and the environment (β = 0.34, P-value ≤ 0.05), as 49% of respondents experienced a 50% decrease in profitability. To mitigate the risk of impact, policymakers should prioritize the principle of prudence to evaluate the significance of mitigation policy implementation (β = 0.144, P-value ≥ 0.05). In a nutshell, toll road construction significantly impacts MSMEs’ business continuity, necessitating an innovative strategy involving monitoring and participatory approaches to mitigate risk.
Copyright © by EnPress Publisher. All rights reserved.