This contribution aims to appraise, analyze and evaluate the literature relating to the interaction of electromagnetic fields (EMF) with matter and the resulting thermal effects. This relates to the wanted thermal effects via the application of fields as well as those uninvited resulting from exposure to the field. In the paper, the most popular EMF heating technologies are analyzed. This involves on the one hand high frequency induction heating (HFIH) and on the other hand microwave heating (MWH), including microwave ovens and hyperthermia medical treatment. Then, the problem of EMF exposure is examined and the resulting biological thermal effects are illuminated. Thus, the two most common cases of wireless EMF devices, namely digital communication tools and inductive power transfer appliances are analyzed and evaluated. The last part of the paper concerns the determination of the different thermal effects, which are studied and discussed, by considering the governing EMF and heat transfer (or bio heat) equations and their solution methodologies.
With the increasing demand for sustainable energy, advanced characterization methods are becoming more and more important in the field of energy materials research. With the help of X-ray imaging technology, we can obtain the morphology, structure and stress change information of energy materials in real time from two-dimensional and three-dimensional perspectives. In addition, with the help of high penetration X-ray and high brightness synchrotron radiation source, in-situ experiments are designed to obtain the qualitative and quantitative change information of samples during the charge and discharge process. In this paper, X-ray imaging technology based on synchrotron and its related applications are reviewed. The applications of several main X-ray imaging technologies in the field of energy materials, including X-ray projection imaging, transmission X-ray microscopy, scanning transmission X-ray microscopy, X-ray fluorescence microscopy and coherent diffraction imaging, are discussed. The application prospects and development directions of X-ray imaging in the future are prospected.
China’s economic structure has made subtle changes with the development of digital economy. Along with the marginal diminishing effect of Chinese monetary policies and the increase of the overall leverage ratio, the Chinese economic growth mode of relying on real estate, trade and infrastructure construction in the past will not be sustainable in the next decade. This paper makes a theoretical analysis on the reduction of the search cost in digital economy. Also, this paper used empirical methods to study the relationship between China’s economic growth and digital infrastructure construction. In conclusion, the digital economy has reduced the search cost for people, and big data will become a product factor participating in labor distribution. In addition, this paper proposes for the first time that digital economy can effectively restrain inflation. The Chinese government needs to attach importance to the issue that current internet enterprise oligarchs will probably monopolize the usage of big data in the development of digital economy in the future and become the obstacle to effective economic growth. In addition, close attention should be paid to the vulnerabilities of financial and taxation systems for digital economic entities to avoid continuous disguised tax subsidies to internet oligarchs, thus preventing industrial monopoly.
BiVO4 was hydrothermally synthesized under different preparing conditions and characterized by XRD, SEM, Raman spectrum and BET specific surface area. The influence of different pH value and annealing temperature and hydrothermal time on the morphologies and structures of the BiVO4 samples was investigated systematically. It can be found that annealing would eliminate the effects caused by the pH of precursor, heating temperature and heating time, but preparing conditions still influenced the size and specific surface area of samples. Furthermore, the photocatalytic activities of the fabricated BiVO4 were also evaluated by the degradation of methyl blue in aqueous solution under UV and visible light irradiation.
Copyright © by EnPress Publisher. All rights reserved.