This study explores the intricate relationship between emotional cues present in food delivery app reviews, normative ratings, and reader engagement. Utilizing lexicon-based unsupervised machine learning, our aim is to identify eight distinct emotional states within user reviews sourced from the Google Play Store. Our primary goal is to understand how reviewer star ratings impact reader engagement, particularly through thumbs-up reactions. By analyzing the influence of emotional expressions in user-generated content on review scores and subsequent reader engagement, we seek to provide insights into their complex interplay. Our methodology employs advanced machine learning techniques to uncover subtle emotional nuances within user-generated content, offering novel insights into their relationship. The findings reveal an inverse correlation between review length and positive sentiment, emphasizing the importance of concise feedback. Additionally, the study highlights the differential impact of emotional tones on review scores and reader engagement metrics. Surprisingly, user-assigned ratings negatively affect reader engagement, suggesting potential disparities between perceived quality and reader preferences. In summary, this study pioneers the use of advanced machine learning techniques to unravel the complex relationship between emotional cues in customer evaluations, normative ratings, and subsequent reader engagement within the food delivery app context.
The St. Peter Sandstone of the American Midwest is presented today in textbooks as a simple and unproblematic example of “layer-cake geology.” The thesis of this paper is that the very simplicity of St. Peter Sandstone has made it challenging to characterize. In widely separated states, the sandstone appeared under different names. Several theories about how it formed began to circulate. The story of the St. Peter is not only the story of the assemblage of a stratigraphic unit over a vast area during three centuries, but also the role the study of the provenance of this unit played in the development of sedimentology in the early twentieth century, research that was made all the more challenging by its “simple” mineralogy. Indeed, the St. Peter has been controversial since it was first described.
The purpose of this study is to examine the impact of tourist spending and the growth of Oman’s tourism industry on the country’s GDP from 1996 to 2018. The study uses the error correction model and other tests for assessing the link among variables, such as the cointegration test and the Granger causality test, to accomplish its aims. Findings from the error correlation model and cointegration test show that there is a link between the variables in Oman over the long and short term. There is a positive and statistically significant relationship between tourist expenditures and economic growth, as well as a negative and statistically significant relationship between tourism expansion and economic growth. We now use ARDL regression estimators to assess the robustness of the empirical results. There is no evidence of a direct relationship between increased tourism and GDP growth, according to the study’s results. According to the research, sustainable tourism development is an achievable economic growth driver, and Oman should prioritize economic policies that support this trend.
Copyright © by EnPress Publisher. All rights reserved.