In the process of English learning, primary school English is an important period of enlightenment. However, teachers’ old-fashioned teaching methods and obscure teaching contents make primary school students less interested in learning English, which will affect students’ entire English learning career. Under this educational background, the education department should analyze the existing problems in English teaching methods, teaching contents and teaching concepts based on the current situation of English teaching in primary schools, aiming to improve the interest of English teaching in primary schools through effective strategies.
This paper proposes a floating-interest-rate infrastructure bond, where the interest of a government bond is paid to investors during the period of construction and the early period of operation. Unlike the usual government bond, which provides a fixed interest rate, the proposed floating-interest-rate infrastructure bond pays a floating interest, the rate of which depends on spillover tax revenues. Effective infrastructure projects have a positive effect on the economic growth of a region, known as the spillover effect. When user charges and the return from spillover tax revenues are below the fixed rate of the government bond, the interest rate will equal to the fixed rate of the government bond. In this case, investors in the infrastructure will receive interest on the government bond at the minimum rate. As the spillover effect of the infrastructure increases, the rate of return for infrastructure investment will become greater than the fixed rate of the government bond. The success of the floating-interest-rate infrastructure bond depends on the spillover effect and on transparency and accountability. Policy recommendations are provided in this paper on how to increase the spillover effect and improve transparency and accountability.
The present work shows an application of the Chan-Vese algorithm for the semi-automatic segmentation of anatomical structures of interest (lungs and lung tumor) in 4DCT images of the thorax, as well as their three-dimensional reconstruction. The segmentation and reconstruction were performed on 10 CT images, which make up an inspiration-expiration cycle. The maximum displacement was calculated for the case of the lung tumor using the reconstructions of the onset of inspiration, the onset of expiration, and the voxel information. The proposed method achieves appropriate segmentation of the studied structures regardless of their size and shape. The three-dimensional reconstruction allows us to visualize the dynamics of the structures of interest throughout the respiratory cycle. In the future, it is expected to have more evidence of the good performance of the proposed method and to have the feedback of the clinical expert, since the knowledge of the characteristics of anatomical structures, such as their dimension and spatial position, helps in the planning of Radiotherapy (RT) treatments, optimizing the radiation dose to cancer cells and minimizing it in healthy organs. Therefore, the information found in this work may be of interest for the planning of RT treatments.
Copyright © by EnPress Publisher. All rights reserved.