Aubert G, Kornprobst P. Mathematical problems in image processing: Partial differential equations and the calculus of variations. Springer Science and Business Media 2006; 147. doi: 10.1007/978-0-387-44588-5.
Faggiano E, Fiorino C, Scalco E, et al. An automatic contour propagation method to follow parotid glands deformation during head-and-neck cancer Tomotherapy. Physics in Medicine and Biology 2011; 56(3): 775–791. doi: 10.1088/0031-9155/56/3/015.
Fox J, Ford E, Redmond K, et al. Quantification of tumor volume changes during radiotherapy for non-small-cell lung cancer. International Journal of Radiation Oncology Biology Physics 2009; 74(2): 341–348. doi: 10.1016/j.ijrobp.2008.07.063.
Mageras GS, Mechalakos J. Planning in the IGRT context: Closing the loop. Seminars in Radiation Oncology 2007; 17: 268–277. doi: 10.1016/j.semradonc.2007.06.002.
Pal NR, Pal SK. A review on image segmentation techniques. Pattern Recognition 1993; 26(9): 1277–1294. doi: 10.1016/0031-3203(93)90135-J.
Chandhok C, Chaturvedi S, Khurshid AA. An approach to image segmentation using K-means clustering algorithm. International Journal of Information Technology 2012; 1: 11–17.
Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 1979l; 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076.
Hernandez S, Mejia AR, Arce ER, et al. Evaluación cuantitativa del desempeño de métodos de segmentación aplicados a imágenes médicas para el análisis de estructuras anatómicas de interés (Spanish) [Quantitative evaluation of the performance of segmentation methods applied to medical images for the analysis of anatomical structures of interest]. Memorias Congreso Nacional de Ingeniería Biomédica 2015; 2: 374–377.
Vandemeulebroucke J, Rit S, Kybic J, et al. Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs. Medical Physics 2011; 38(1): 166–178. doi: 10.1118/1.3523619.
Jianyuan D, Chongyang H. 3D fast level set image segmentation based on Chan Vese model. 3rd International Conference on Bioinformatics and Biomedical Engineering; 2009. p. 11–13. doi: 10.1109/ICBBE.2009.5162136.
Liu L, Zeng L, Luan X. 3D robust Chan-Vese model for industrial computed tomography volume data segmentation. Optics and Lasers in Engineering 2013; 51(11): 1235–1244. doi: 10.1016/j.optlaseng.2013.04.019.
He F, Sun Y. Segmentation of noisy CT volume data using improved 3D Chan-Vese model. 2015 IEEE 7th International Conference on Awareness Science and Technology (iCAST); 2015. p. 31–36. doi: 10.1109/ICAwST.2015.7314016.
Chan TF, Vese LA. Active contours without edges. IEEE Transactions on Image Processing 2001; 10(2): 266–277. doi: 10.1109/83.902291.
Faggiano E, Cattaneo GM, Ciavarro C, et al. Validation of an elastic registration technique to estimate anatomical lung modification in non-small-cell lung cancer tomotherapy. Radiation Oncology 2011; 6(1). doi: 10.1186/1748-717X-6-31.
McAuliffe MJ, Lalonde FM, McGarry D, et al. Medical image processing, analysis and visualization in clinical research. Proceedings of the 14th IEEE Symposium on Computer-Based Medical Systems. Washington: IEEE Computer Society. 2001. p. 381. doi: 10.1109/CBMS.2001.941749.
Mejia AR. Deformable image registration for radiotherapy monomodal applications [PhD thesis]. Milan: Politecnico di Milano; 2013. Available from: https://www.politesi.polimi.it/handle/10589/82803.