With the continuous growth of China's social economy, people's demand for spiritual life is increasing. Most of China's land is used to develop real estate and tourist attractions, which involves the protection of some traditional village buildings. Affected by the development of the times and historical factors, it is difficult to carry out the protection and reuse of traditional village buildings. Under the background of rural revitalization, traditional villages have been unable to meet the needs of current social development, and how to transform them into a common concern of rural workers and rural members. Based on this, this paper focuses on the protection and reuse of traditional village buildings, and emphatically analyzes the combination method of active utilization and protection of tradition and the reuse principle of traditional village buildings from the perspective of live transmission.
Among contemporary computational techniques, Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are favoured because of their capacity to tackle non-linear modelling and complex stochastic datasets. Nondeterministic models involve some computational intricacies when deciphering real-life problems but always yield better outcomes. For the first time, this study utilized the ANN and ANFIS models for modelling power generation/electric power output (EPO) from databases generated in a combined cycle power plant (CCPP). The study presents a comparative study between ANNs and ANFIS to estimate the power output generation of a combined cycle power plant in Turkey. The inputs of the ANN and ANFIS models are ambient temperature (AT), ambient pressure (AP), relative humidity (RH), and exhaust vacuum (V), correlated with electric power output. Several models were developed to achieve the best architecture as the number of hidden neurons varied for the ANNs, while the training process was conducted for the ANFIS model. A comparison of the developed hybrid models was completed using statistical criteria such as the coefficient of determination (R2), mean average error (MAE), and average absolute deviation (AAD). The R2 of 0.945, MAE of 3.001%, and AAD of 3.722% for the ANN model were compared to those of R2 of 0.9499, MAE of 2.843% and AAD of 2.842% for the ANFIS model. Even though both ANN and ANFIS are relevant in estimating and predicting power production, the ANFIS model exhibits higher superiority compared to the ANN model in accurately estimating the EPO of the CCPP located in Turkey and its environment.
Increasing the environmental friendliness of production systems is largely dependent on the effective organization of waste logistics within a single enterprise or a system of interconnected market participants. The purpose of this article is to develop and test a methodology for evaluating a data-based waste logistics model, followed by solutions to reduce the level of waste in production. The methodology is based on the principle of balance between the generation and beneficial use of waste. The information base is data from mandatory state reporting, which determines the applicability of the methodology at the level of enterprises and management departments. The methodology is presented step by step, indicating data processing algorithms, their convolution into waste turnover efficiency coefficients, classification of coefficient values and subsequent interpretation, typology of waste logistics models with access to targeted solutions to improve the environmental sustainability of production. The practical implementation results of the proposed approach are presented using the production example of chemical products. Plastics production in primary forms has been determined, characterized by the interorganizational use of waste and the return of waste to the production cycle. Production of finished plastic products, characterized by a priority for the sale of waste to other enterprises. The proposed methodology can be used by enterprises to diagnose existing models for organizing waste circulation and design their own economically feasible model of waste processing and disposal.
Governments intervene in the housing market via implementing various monetary, fiscal, foreign exchange and credit policies. By this, the housing market undergoes cycles of boom and bust as well as significant swings in value added and housing prices. Therefore, the main goal of this research is to consider the effect of the government’s change on the monetary and financial policy’s impact on the business cycles of the housing sector during the period of 1978–2020. On the other hand, we estimate the impact of monetary and fiscal policies on housing business cycles concerning government’s change. To calculate housing business cycles (boom and busts), the housing value added were initially de-trended using the Hodrick–Prescott filter. This paper takes a novel use of the threshold regression model with government’s change as threshold variable. According to the study’s findings, there are three threshold effects (two threshold levels or three regimes) of monetary and fiscal policy on housing business cycles. For instance, the money supply coefficient in the first regime was −1.68, indicating that the effect of monetary policy in this regime is countercyclical. in the second and third regimes, it was 0.19 and 0.03, respectively; indicating its alignment with the housing business cycle. Regarding the estimated models, we may derive several interesting conclusions. In first regime, the money supply is countercyclical and government expenditure is pro-cyclical. This means that monetary policy exacerbates recession and fiscal policy weakens it. in the second and third regimes, the money supply is pro-cyclical and government expenditure is countercyclical. As a result, while formulating their monetary policies, governments should give the housing sector more consideration. Additionally, when putting this policy into practice, the housing sector has to be carefully examined.
Increasing levels of everyday cycling has many benefits for both individuals and for cities. Reduced traffic congestion, improved air quality and safer spaces for all vulnerable road users are among the significant benefits for urban developments. Despite this, public opposition to cycling infrastructure is common, particularly when it involves reprioritising road space for cycles instead of vehicles. The purpose of the research was to examine various stakeholders’ perspectives on proposed cycle infrastructure projects. This study utilised an innovative data collection approach through detailed content analysis of 322 public consultation submissions on a proposed active travel scheme in Limerick City, Ireland. By categorising submissions into support, opposition, and proposals, the study reveals the nuanced public perceptions that influence behavioural adaptation and acceptance of sustainable transport infrastructure. Supportive submissions, which outnumbered opposition-related submissions by approximately 2:1, emphasised the need for dedicated cycling infrastructure, enhanced cyclist safety, and potential improvements in environmental conditions. In contrast, opposition submissions focused on concerns over car parking removal, decreased accessibility for residents, and safety issues for vulnerable populations, particularly the elderly. Proposal submissions suggested design modifications, including enhanced safety features, provisions for convenient car parking, and alternative cycle routes. This paper highlights the value of structured public consultation data in uncovering behavioural determinants and barriers to cycling infrastructure adoption, offering policymakers essential insights into managing public opposition and fostering support. The methodology demonstrates how qualitative data from consultations can be effectively used to inform policy by capturing community-specific needs and enhancing the design of sustainable urban mobility systems. These findings underscore the need for innovative, inclusive data collection methods that reveal public sentiment, facilitating evidence-based transport policies that support climate-neutral mobility.
Copyright © by EnPress Publisher. All rights reserved.