This study provides empirical data on the impact of generative AI in education, with special emphasis on sustainable development goals (SDGs). By conducting a thorough analysis of the relationship between generative AI technologies and educational outcomes, this research fills a critical gap in the literature. The insights offered are valuable for policymakers seeking to leverage new educational technologies to support sustainable development. Using Smart-PLS4, five hypotheses derived from the research questions were tested based on data collected from an E-Questionnaire distributed to academic faculty members and education managers. Of the 311 valid responses, the measurement model assessment confirmed the validity and reliability of the data, while the structural model assessment validated the hypotheses. The study’s findings reveal that New Approaches to Learning Outcome Assessment (NALOA) significantly contribute to achieving SDGs, with a path coefficient of 0.477 (p < 0.001). Similarly, the Use of Generative AI Technologies (UGAIT) has a notable positive impact on SDGs, with a value of 0.221 (p < 0.001). A Paradigm Shift in Education and Educational Process Organization (PSEPQ) also demonstrates a significant, though smaller, effect on SDGs with a coefficient of 0.142 (p = 0.008). However, the Opportunities and Risks of Generative AI in Education (ORGIE) study did not find statistically significant evidence of an impact on SDGs (p = 0.390). These findings highlight the potential opportunities and challenges of using generative AI technologies in education and underscore their key role in advancing sustainable development goals. The study also offers a strategic roadmap for educational institutions, particularly in Oman to harness AI technology in support of sustainable development objectives.
Recently, there has been a burgeoning fascination with the influence of urban green spaces (UGS) on physical activity (PA) and health. This interest has been accompanied by a mounting body of evidence that establishes a connection between UGS and residents’ PA levels. Numerous studies have been conducted to investigate the significance of UGS and have generally agreed on their connection with health. However, there is still considerable variation in viewpoints regarding the intermediate factors contributing to this association. The primary objective of this study was to investigate the potential correlation between different qualitative factors of UGS and PA. The study involved the collection of data from four parks located in Edinburgh. Four trained observers utilised the Environmental Assessment of Public Recreational Spaces (EARPS Mini) tool to code various environmental characteristics. Additionally, the Method for Observing Physical Activity and Wellbeing (MOHAWk) observation tool was employed to code instances of on-site incivility and the characteristics and behaviours of residents engaging in UGS activities. The results of this study show that the facilities and environment, area and socioeconomic status (SES) of UGS positively affect the type of PA and the level of PA, as well as influence residents’ attentiveness to the environment and their interactions with each other. Demographics such as gender and age group are also significantly related to the level and type of PA. Significant differences in the level and type of PA, and race only differed significantly in the choice of activity type. These results suggest that the quality of the UGS environment affects the level, type, and status of PA among residents and that resident characteristics also have an impact. Future research suggests increasing data collection related to PA frequency and PA duration and considering longitudinal observations over time for refinement.
In this paper, we modeled and simulated two tandem solar cell structures (a) and (b), in a two-terminal configuration based on inorganic and lead-free absorber materials. The structures are composed of sub-cells already studied in our previous work, where we simulated the impact of defect density and recombination rate at the interfaces, as well as that of the thicknesses of the charge transport and absorber layers, on the photovoltaic performance. We also studied the performance resulting from the use of different materials for the electron and hole transport layers. The two structures studied include a bottom cell based on the perovskite material CsSnI3 with a band gap energy of 1.3 eV and a thickness of 1.5 µm. The first structure has an upper sub-cell based on the CsSnGeI3 material with an energy of 1.5 eV, while the second has an upper sub-cell made of Cs2TiBr6 with a band gap energy of 1.6 eV. The theoretical model used to evaluate the photocurrent density, current-voltage characteristic, and photovoltaic parameters of the constituent sub-cells and the tandem device was described. Current matching analysis was performed to find the ideal combination of absorber thicknesses that allows the same current density to be shared. An efficiency of 29.8% was obtained with a short circuit current density Jsc = 19.92 mA/cm2, an open circuit potential Voc = 1.46 V and a form factor FF = 91.5% with the first structure (a), for a top absorber thickness of CsSnGeI3 of 190 nm, while an efficiency of 26.8% with Jsc = 16.74, Voc = 1.50 V and FF = 91.4% was obtained with the second structure (b), for a top absorber thickness of Cs2TiBr6 of 300 nm. The objective of this study is to develop efficient, low-cost, stable and non-toxic tandem devices based on lead-free and inorganic perovskite.
Knowledge of the state of fragmentation and transformation of a forested landscape is crucial for proper planning and biodiversity conservation. Chile is one of the world’s biodiversity hotspots; within it is the Nahuelbuta mountain range, which is considered an area of high biodiversity value and intense anthropic pressure. Despite this, there is no precise information on the degree of transformation of its landscape and its conservation status. The objective of this work was to evaluate the state of the landscape and the spatio-temporal changes of the native forests in this mountain range. Using Landsat images from 1986 and 2011, thematic maps of land use were generated. A 33% loss of native forest in 25 years was observed, mainly associated to the substitution by forest plantations. Changes in the spatial patterns of land cover and land use reveal a profound transformation of the landscape and advanced fragmentation of forests. We discuss how these patterns of change threaten the persistence of several endemic species at high risk of extinction. If these anthropogenic processes continue, these species could face an increased risk of extinction.
This article describes a classification tool to cluster SARAL/AltiKa waveforms. The tool was made using Python scripts. Radar altimetry systems (e.g., SARAL/AltiKa) measures the distance from the satellite centre to a target surface by calculating the satellite-to-surface round-trip time of a radar pulse. An altimeter waveform represents the energy reflected by the earth’s surface to the satellite antenna with respect to time. The tool clusters the altimetric waveforms data into desired groups. For the clustering, we used evolutionary minimize indexing function (EMIF) with k-means cluster mechanism. The idea was to develop a simple interface which takes the altimetry waveforms data from a folder as inputs and provides single value (using EMIF algorithm) for each waveform. These values are further used for clustering. This is a simple light weighted tool and user can easily interact with it.
Copyright © by EnPress Publisher. All rights reserved.