The co-hydrothermal carbonization of biomasses has shown many advantages on charcoal yield, carbonization degree, thermal-stability of hydrocar and energy recovered. The goal of this study is to investigate the effect of co-combustion of cattle manure and sawdust on energy recovered. The results show that ash content ranged between 10.38%–20.00%, indicating that the proportion of each variable influences energy recovered. The optimum is obtained at 51% cattle manure and 49% sawdust revealing 37% thermal efficiency and 3.9 kW fire power. These values are higher compared to cattle manure individually which gives values of 30% and 2.3 kW respectively for thermal efficiency and fire power. Thus, the mixture of biomasses enhances energy recovered both in combustion and hydrothermal carbonization. Volatile matter is lower in mixture predicting that the flue gas releases is lower during combustion. Fixed carbon is higher in mixture predicting that energy recovered increases during the combustion of mixture than cattle manure individually. Higher Carbon content was noticed in mixture than cattle manure indicating that the incorporation of sawdust enhances heating value. The incorporation of sawdust in cattle manure can also enhance energy recovered and is more suitable for domestic and industrial application.
Rapid global warming and continuous climate change threaten the construction industry and human existence, especially in developing countries. Many developed countries are engaging their professional stakeholders on innovation and technology to mitigate climate change on humanity. Studies concerning inclusive efforts by developing countries’ stakeholders, including Nigeria, are scarce. Thus, this study investigates the construction industry’s practitioners’ preparedness to mitigate climate change through pre- and post-planning. Also, the study appraises climate change’s impact on construction activities and proffered measures to mitigate them. The research employed face-to-face data collection via a qualitative approach. The researchers engaged 33 knowledgeable participants. The study covered Abuja, Benin City, Owerri, and Lagos and achieved saturation at the 30th participant. The research employed a thematic approach to analyse the collected data. Findings reveal that Nigerian construction practitioners cannot cope with climate change impacts because of lax planning and inadequate technology to mitigate the issues. Also, the government’s attitude towards climate change has not helped matters. Also, the study suggested measures to mitigate the impact of climate change on construction activities in Nigeria. Therefore, as part of the research contributions, all-inclusive and integrated regulatory policies and programmes should be tailored toward mitigating climate change. This includes integrated stakeholder sensitisation, investment in infrastructure that supports anti-climate change, prioritising practices in the industry to achieve sustainable project transformation, and integration of climate change interventions into pre- and post-contract administration.
This study addresses the crucial question of the macroeconomic impact of investing in railroad infrastructure in Portugal. The aim is to shed light on the immediate and long-term effects of such investments on economic output, employment, and private investment, specifically focusing on interindustry variations. We employ a Vector Autoregressive (VAR) model and utilize industry-level data to estimate elasticities and marginal products on these three economic indicators. Our findings reveal a compelling positive long-term spillover effect of these investments. Specifically, every €1 million in capital spending results in a €20.84 million increase in GDP, a €17.78 million boost in private investment, and 72 new net permanent jobs. However, these gains are not immediate, as only 14.5% of the output increase and 38.8% of the investment surge occur in the first year. In contrast, job creation is nearly instantaneous, with 93% of new jobs materializing within the first year. A short-term negative impact on the trade balance is expected as new capital goods are imported. Upon industry-level analysis, the most pronounced output increases are witnessed in the real estate, construction, and wholesale and retail trade industries. The most substantial net job creation occurs in the construction, professional services, and hospitality industries. This study enriches the empirical literature by uncovering industry-specific impacts and temporal macroeconomic effects of railroad infrastructure investments. This underscores their dual advantage in bolstering long-term economic performance and counteracting job losses during downturns, thus offering valuable public policy implications. Notably, these benefits are not evenly distributed across all industries, necessitating strategic sectoral planning and awareness of employment agencies to optimize spending programs and adapt to industry shifts.
Copyright © by EnPress Publisher. All rights reserved.