The aim was to examine the relationships between selected demographic and psychographic factors and consumers' willingness to accept content generated by advanced technological innovations (AIGC) in social infrastructure. The sample consisted of 1,308 respondents. Spearman's correlation coefficient was used to examine the relationships between ordinal variables. To assess the differences between groups of respondents, a one-way analysis of variance was used, during which multiple linear regression analysis was used to confirm the predictive power of awareness and experience in relation to AI-generated content in relation to the tendency to accept such content. The study confirmed a statistically significant but weak negative relationship between the age of respondents and their willingness to accept AIGC, with younger age groups showing a slightly higher rate of acceptance. Respondents' attitudes toward the use of personal data through AI and their overall awareness of technological trends had a more significant impact on acceptance. The findings show that respondents who are open to data collection through AI technologies show a significantly higher level of acceptance of automatically generated content. Similarly, respondents who positively evaluate the current quality of AIGC have higher expectations for the future transformation of marketing strategies and media practices. The decisive factors in the social infrastructure for the acceptance of AIGC are not so much the age of the respondents, but rather their awareness, technological literacy, and level of trust in the technology itself. The study therefore recommends increasing transparency and public awareness about the use of AI in marketing and media practices in order to strengthen consumer confidence in automated content.
Farm households in developing countries are often involved in a variety of livelihood income-generating activities to achieve basic needs and enhance food security. However, little attention has been given to investigating the effect of livelihood diversification strategies on the adoption of agricultural land management practices. This study explored the nexus between livelihood diversification and Agricultural Land Management (ALM) practices in the Southern Ethiopian Highlands. Data for this study were gathered through a structured questionnaire, interviews, and focus group discussions. A total of 423 sample respondents were selected by using multistage random sampling techniques. The data were analyzed using the Inverse Herfindahl Hirschman Diversity Index (IHHDI), the multinomial logit model (MNL), and the probit regression model. The findings of the study revealed that on-farm income activities are the most dominant livelihood income strategies (69.1%), followed by non-farm (21%) and off-farm (9.64%). The multinomial logit model analysis demonstrated that variables such as sex, education, family size, distance to market, land size, extension contact, membership in cooperatives, and household income were the major drivers of farmers income diversification activities (p<0.05). The results of the probit analysis indicated that income from crop production, daily labor work, rents from farmland, and farm assets have a positive and significant effect on households' decisions to implement ALM practices. In contrast, incomes from remittance and migrant sources have a negative but statistically significant impact on the adoption of ALM measures. The farm household sources of income-generating strategies substantially affected the adoption intensity of ALM measures. Income generated from the on-farm sector alone cannot be considered a core income-generating activity for households or a means of achieving food security. Therefore, land management policies and program implementations should consider farmers’ livelihood diversification and income-generating strategies. In addition, such interventions need to promote sustainable farming practices, enhance innovation, and related measures for the adoption of ALM measures to ensure land sustainability.
The MDA-MB-231 cell line is derived from triple-negative breast cancer (TNBC), representing one of the most aggressive forms of breast cancer. Innovative therapeutic strategies, including s targeted therapies using nanocarriers, hold significant promise, particularly for difficult-to-treat cancers such as TNBC. Nanoparticles have transformed the medical field by serving as advanced drug delivery systems for cancer treatment. They play a critical role in overcoming the drug resistance often associated with cancer therapies. When utilized as drug delivery vehicles, nanoparticles can specifically target cancer cells and effectively reduce or eliminate multidrug resistance. Among them, chitosan-coated magnetic nanoparticles (MNPs) have been widely explored for the loading and controlled release of various anticancer agents. In this study, we evaluated the effects of dexamethasone-loaded chitosan-coated MNPs on MDA-MB-231 cell lines. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to verify the successful loading of dexamethasone onto the nanoparticles. To assess cytotoxicity, empty nanoparticles, free drug, and drug-loaded nanoparticles were tested on the cells. The results indicated that empty nanoparticles exhibited no toxic effects. The IC50 value of the free drug was 123 µg/mL, while the IC50 value of the drug-loaded nanoparticles was significantly lower, at 63 µg/mL. These findings confirmed the successful conjugation of dexamethasone to the chitosan-coated MNPs, demonstrating substantial cytotoxic effects on breast cancer cells. Although dexamethasone has been reported to exhibit both tumor-suppressive and pro-metastatic effects, its specific impact on TNBC warrants further investigation in future studies.
Copyright © by EnPress Publisher. All rights reserved.