The micro staring hyperspectral imager can simultaneously acquire two spatial and one spectral images, and only record the external orientation elements of the entire hyperspectral image rather than the external orientation elements of each frame of the image, which avoids the geometric instability during scanning, effectively solves the problem of large geometric deformation of the small line scanning hyperspectral imager, and is suitable for the small UAV load platform with unstable attitude. At present, most of the research focuses on the radio-metric correction method of line scan hyperspectral imager. The application time of staring hyperspectral imager is short, and there is no mature data processing re-search at home and abroad, which hinders the application of UAV micro staring hyperspectral imaging system. In this paper, the calibration method of the linearity and variability of the radiation response of the micro staring hyperspectral imager on the UAV is studied, and the effectiveness of this method is quantitatively evaluated. The results show that the hyperspectral image has obvious vignetting effect and strip phenomenon before the correction of radiation response variability. After the correction, the radiation response variation coefficient of pixels in different bands decreases significantly, and the vignetting effect and image strip decrease significantly. In this paper, a multi-target radiometric calibration method is proposed, and the accuracy of radiometric calibration is verified by comparing the calibrated hyperspectral image spectrum with the measured ground object spectrum of the ground spectrometer. The results show that the calibration results of the multi-target radiometric calibration method show better results, especially for the near-infrared band, and the difference with the surface reflectance measured by the spectrometer is small.
The content of flavonoids in mesophyll cells of wheat was studied under the condition of enhanced UV-B radiation intensity. In this experiment, four groups of six days of control were treated with He-Ne laser group (L), enhanced UV-B radiation group (B), He-Ne laser and UV-B combined treatment group (B + L ), Normal light group (CK). Since the flavonoids carry some unsubstituted hydroxyl or glycosyl groups, it is a polar compound. By the 'similar compatibility' principle, they have some level of solubility in polar solvents, such as methanol, ethanol, n-butanol, propanol, and water. In this experiment, 70% ethanol was used to extract flavonoids. Finally, the total content of flavonoids in mesophyll cells was determined by visible spectrophotometry. The OD value of flavonoids was determined by rutin reagent 'The standard curves because rutin is a representative of flavonoids, it scavenging the role of free radicals significantly. The results showed that when the UV-B UV radiation intensity was enhanced, the content of flavonoids in wheat mesophyll cells increased, that is, the content of flavonoids in wheat leaves was higher than that in UV-B Strength was positively correlated. The results showed that the content of flavonoids in the mesophyll cells of the four control groups was the same as that of the B group> BL group> CK group> L group. With the prolonging of the treatment time of wheat, the content of flavonoids in wheat leaves at jointing-booting stage was significantly higher than that in seedling stage and panicle stage. This means that flavonoids are a protective substance that absorbs UV-B in plants, that is, the absorption of UV-B by flavonoids reduces the damage of UV-B to organs in plants [8] [10]; UV-B The smaller the damage, the less the content of flavonoids; laser damage caused by UV-B have a certain role in the repair. In this study, we further studied the effect of enhanced UV-B radiation on the content of flavonoids in mesophyll cells of wheat. The effects of UV-B radiation on the content of flavonoids in wheat were studied. Whether it has a very important significance for wheat has become a stress [5].
Tropical dry forests are complex and fragile ecosystems with high anthropogenic intervention and restricted reproductive cycles. They harbor unique richness, structural, physiological and phenological diversity. This research was carried out in the upper Magdalena valley, in four forest fragments with different successional stages. In each fragment, four permanent plots of 0.25 ha were established and the light habitat associated with species richness, relative abundance and rarity was evaluated, as well as the forest dynamics that included mortality, recruitment and diameter growth for a period of 5.25 years. In mature riparian forest, species richness was found to be higher than that reported in other studies for similar areas in the Cauca Valley and the Atlantic coast. Values of species richness, heterogeneity and rarity are higher than those found in drier areas of Tolima. Forest structure, diversity and dynamics were correlated with light habitat, showing differences in canopy architecture and its role in the capture and absorption of radiation. The utilization rate of photosynthetic effective radiation in the forest underlayer with high canopy density is low, which is related to the low species richness, while the underlayer under light is more abundant and heterogeneous.
The properties of the beta batteries are compared, which are made on the basis of the different β-isotopes with beta decay. Tritium and Ni-63 make it possible to make β-sources of high activity, without harmful associated emissions, with low self-absorption, emitting high-energy β-electrons that penetrate deep into the semiconductor and generate a large number of electron-hole pairs. The efficiency of beta batteries needs to be analyzed based on the real energy distribution of β-electrons. It makes possible to obtain the real value of the energy absorbed inside the β-source, correctly estimate the amount of self-absorption of the β-electrons and part of the β-electronsthere is a penetrate into the semiconductor, the number of electrons and holes that are generated in the semiconductor, and the magnitude of the idling voltage. Formulas for these quantities are calculated in this paper.
The development status of flat panel solar water heater and the composition of water heater are described. The solar radiation in three typical weather conditions of sunny, cloudy and rainy days is studied. The hot water temperature, heat and heat collector efficiency are studied. The results show that the influence of the weather on the solar irradiance is large, and the irradiance has a great influence on the water temperature.
The current study provides a comprehensive analysis of MHD hybrid nanofluids and stagnation point flow toward a porous stretched cylinder in the presence of thermal radiation. Here, alumina (Al2O3) and copper (Cu) are considered the hybrid nanoparticles, while water (H2O) is the base fluid. To begin, the required similarity transformations are applied to transform the nonlinear coupled PDEs into nonlinear coupled ODEs. The obtained highly nonlinear sets of ODEs are then solved analytically by using the HAM procedure. The calculations of the thermal radiation term in the energy equation are done based on the Roseland approximation. The result of various embedded variables on temperature and velocity profiles is drawn and explained briefly. Aside from that, the numerical solution of well-known physical quantities, like skin friction and the Nusselt number, is computed by means of tables for the modification of the relevant parameter. The analysis shows that the magnetic field has opposite behavior on θ(η) and f'(η) profiles. It is seen that more magnetic factors M decline f'(η) and upsurge θ(η). Moreover, the behavior of skin friction and the Nusselt number are the same for the magnetic parameter M. Meanwhile, a higher Reynolds number Re declines temperature profile and skin friction while upsurging the local Nusselt number. There are many applications of this study that are not limited to engineering and manufacturing, such as polymer industry, crystal growth, tumor therapy, plasma, fusing metal in electric heaters, nuclear reactors, asthma treatment, gastric medication, cooling of atomic systems, electrolytic biomedicine, helical coil heat exchangers, axial fan design, polymer industry, plane counter jets, and solar collectors.
Copyright © by EnPress Publisher. All rights reserved.