Objective: to achieve accurately and rapidly the mapping of agricultural land use and crop distribution at the township scale. Methods: this study, based on specific methods, such as, time-series remote sensing index threshold classification and maximum likelihood, classifies each land use type and extracts crop spatial information, under the guidance of Sentinel-2A remote sensing images, to carry out agricultural land use mapping at township scale. And the mapping concerned will be verified by comparing with an agricultural spatial information map of a 0.5 m resolution, which is based on WorldVieW-2 fused images. Results: (1) the area accuracy of grain and oil crop land, vegetable land, agricultural facilities land and garden land is fairly good, with 92.93%, 98.98%, 95.71% and 95.14% respectively, and within 8% variation from actual area; (2) the spatial information of plot boundary, farmland road network, and canal network produced by OSM road data and historical high-resolution images was overlayed with the classification results of Sentinel-2A multi-spectral image for mapping, which can improve the accuracy of plot boundary information of classification results for the image with 10 m resolution. Conclusions: the use of multi-source information fusion method, agricultural land use and crop distribution space big data produced by Sentinel-2A optical image, can effectively improve the accuracy and timeliness of land use mapping at the township scale, to provide technical reference for the application of remote sensing big data to carry out agricultural landscape analysis at the township scale, optimization and adjustment of agricultural structure, etc.
This paper describes the significance, content, progress and corresponding basic theory and experimental research methods of micron/nanometer scale thermal science and engineering, which is one of the latest cutting-edge disciplines, and analyzes the effects of micron nanometer devices on the scale effect series of challenging hot issues, discussed the corresponding emergence of some new phenomena and new concepts, pointed out that the micron/nano thermal science aspects of the recent development of several types of theory and experimental technology success and shortcomings, and summed up a number for the exploration of the new ways and new directions, especially on some typical micron/nano-thermal devices and micro-scale biological heat transfer in some important scientific issues and their engineering applications were introduced.
In China, ideological and political education is currently the hot direction of teaching reform in various colleges and universities, yet the development of appropriate teaching evaluation methods needs to catch up. This study addresses the pressing need for a preliminary investigation into the complex relationships among ideological and political education, the students’ learning satisfaction and teaching quality. This research examines the influence of teaching and ideological and political education quality on students’ satisfactions by designing a set of scales, collecting about 3800 questionnaires. Utilizing Structural Equation Modeling (SEM) and qualitative interviews, this study reveals that the teaching quality directly affects students’ learning satisfaction and ideological and political education. Notably, ideological and political education can also affect students’ learning satisfaction. The findings underscore the importance of including ideological and political education assessments in evaluating courses. This research contributes to the ongoing dialogue on effective teaching evaluation methods in the context of evolving educational practices.
Cobalt-based sulfides have emerged as promising candidates for next-generation high-performance anode materials for lithium-ion batteries (LIBs) due to their high theoretical specific capacity and reversible conversion reaction mechanisms. However, their practical application is hindered by volume expansion effects and relatively low rate performance. Guided by theoretical principles, this study synthesizes nanoscale Bi/CoS-C and Bi/Co4S3-C (denoted as Bi/CS-C) composite materials using Co and Bi2S3 as precursors via a solid-state ball milling method. The electrochemical properties of these materials were systematically investigated. When employed as anodes for LIBs, Bi/CoS-C and Bi/CS-C exhibit excellent rate capabilities. At current densities of 0.1, 0.5, 1, 4, and 10 A/g, the reversible capacities of Bi/CoS-C were 939.2, 730.7, 655.6, 508.1, and 319 mAh/g, respectively. In contrast, Bi/CS-C exhibited reversible capacities of 760.4, 637.6, 591.9, 484.3, and 295.4 mAh/g, respectively. Moreover, Co4S3, as an active component, enables superior long-cycle performance compared to CoS. After 300 cycles at 0.2 A/g, the Bi/CoS-C and Bi/CS-C electrodes retained capacities of 193.1 and 788.8 mAh/g, respectively. This study demonstrates that nanostructure design and carbon-based composite materials can effectively mitigate the volume expansion issue of cobalt-based sulfides, thereby enhancing their rate performance and cycling stability. This strategy provides new insights for the development of high-performance anode materials for lithium-ion batteries and is expected to accelerate their practical application in next-generation energy storage devices.
Aiming at the problem of road network multi-scale matching, a multi-scale road matching method under the constraint of road mesh of small-scale data has been proposed. First, two road meshes with different scale data are constructed; Secondly, under the constraint of the small-scale road mesh, the composite mesh composed of several road meshes in the large-scale road is extracted, and the mesh matching with the small-scale road mesh is completed; Then, many-to-many matching of road meshes with different scales is realized; finally, the matching relationship between composite mesh and small-scale road mesh is transformed into the matching between multi-scale road mesh boundary roads and internal roads, and the matching of the whole road network is completed. The experimental results show that this method can better realize the matching of multi-scale road network.
An image adaptive noise reduction enhancement algorithm based on NSCT is proposed to perform image restoration preprocessing on the defocused image obtained under the microscope. Defocused images acquired under micro-nano scale optical microscopy, usually with inconspicuous details, edges and contours, affect the accuracy of subsequent observation tasks. Due to its multi-scale and multi-directionality, the NSCT transform has superior transform functions and can obtain more textures and edges of images. Combined with the characteristics of micro-nanoscale optical defocus images, the NSCT inverse transform is performed on all sub-bands to reconstruct the image. Finally, the experimental results of the standard 500 nm scale grid, conductive probe and triangular probe show that the proposed algorithm has a better image enhancement effect and significantly improves the quality of out-of-focus images.
Copyright © by EnPress Publisher. All rights reserved.