1. Navia Simon D, Diaz Anadon L. Power price stability and the insurance value of renewable technologies. Nature Energy 2025. 10(3): 329–341. doi: 10.1038/s41560-025-01704-0
2. Kan X, Reichenberg L, Hedenus F, Daniels D. Renewable export cost index as an indicator of global renewable energy trade potential. Communications Earth & Environment. 2025; 6(1): 112. doi: 10.1038/s43247-025-02094-7
3. Costa CM, Pinto RS, Serra JP, et al. Next generation sustainable lithium-ion batteries: Micro and nanostructured materials and processes. Chemical Engineering Journal. 2025; 509: 161337. doi: 10.1016/j.cej.2025.161337
4. Jeong H, Kim J, Lee S-H, et al. Iron-catalyzed graphitization of lignocellulose: A pathway to develop artificial graphite as anode materials for lithium-ion batteries applications. Journal of Alloys and Compounds. 2025; 1020: 179485. doi: 10.1016/j.jallcom.2025.179485
5. Li X, Deng C, Liu M, et al. Reutilization and upcycling of spent graphite for sustainable lithium-ion batteries: Progress and perspectives. eScience. 2025; in press.
6. Wang K, Hua W, Huang X, et al. Synergy of cations in high entropy oxide lithium ion battery anode. Nature Communications. 2023; 14 (1): 1487. doi: 10.1038/s41467-023-37034-6
7. Ali S, Bakhtiar SUH, Ismail A, et al. Transition metal sulfides: From design strategies to environmental and energy-related applications. Coordination Chemistry Reviews. 2025; 523: 216237. doi: 10.1016/j.ccr.2024.216237
8. Hu X, Ma P, Zhang Z, et al. Emerging transition metal sulfide/MXene composites for the application of electrochemical energy storage. Chemical Engineering Journal. 2024; 499: 156272. doi: 10.1016/j.cej.2024.156272
9. Wang S, Qu C, Wen J, et al. Progress of transition metal sulfides used as lithium-ion battery anodes. Materials Chemistry Frontiers. 2023; 7(14): 2779–2808. doi: 10.1039/D2QM01200F
10. Jiang S, Mao M, Pang M, et al. N-doped 3D reduced graphene oxide supported C-encapsulated Co9S8/Co4S3 composites as anode for improved lithium storage. Journal of Alloys and Compounds. 2023; 968: 172206. doi: 10.1016/j.jallcom.2023.172206
11. Pantrangi M, Ashalley E, Hafiz W, et al. Core-shell transition metal disulfide grafted carbon matrix composite as an anode material for high-performance lithium-ion batteries. Journal of Energy Storage. 2025; 114: 115878. doi: 10.1016/j.est.2025.115878
12. Zheng J, He C, Li X, et al. CoS2–MnS@Carbon nanoparticles derived from metal–organic framework as a promising anode for lithium-ion batteries. Journal of Alloys and Compounds. 2021; 854: 157315. doi: 10.1016/j.jallcom.2020.157315
13. Lin Y, Qiu Z, Li D, et al. NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Materials 2018; 11: 67–74. doi: 10.1016/j.ensm.2017.06.001
14. Li ZA, Wang SG, Chen PP, et al. Interface Engineering of MOF-Derived Co3O4@CNT and CoS2@CNT Anodes with Long Cycle Life and High-Rate Properties in Lithium/Sodium-Ion Batteries. ACS Applied Materials & Interfaces. 2024; 16: 19730–19741. doi: 10.1021/acsami.3c19361
15. Liu M, Wang L, Zeng X, et al. Hierarchical Ni3S2/CoS2 Nanosheet Arrays on Ni Foam as Superior Anode Materials for Lithium-Ion Batteries. ACS Applied Nano Materials. 2025; 8(14). doi: 10.1021/acsanm.5c00388
16. Lee HR, Kim YS, Lee SY, et al. Bifunctional effects of nitrogen-doped carbon quantum dots on CoS2/mesoporous carbon composites for high-performance lithium-ion batteries. Applied Surface Science. 2024; 664: 160228. doi: 10.1016/j.apsusc.2024.160228
17. Shi M, Wang Q, Hao J, et al. MOF-derived hollow Co4S3/C nanosheet arrays grown on carbon cloth as the anode for high-performance Li-ion batteries. Dalton Transactions. 2020; 49(40): 14115–14122. doi: 10.1039/D0DT03070H
18. Zhou C, Ma X, Liu G, et al. Three-dimensional interwoven CoS2/reduced graphene oxide/carbon nanotubes composite as anode materials for high-performance lithium-ion batteries. Journal of Alloys and Compounds. 2024; 972: 172800. doi: 10.1016/j.jallcom.2023.172800
19. Wu J, Wang K, Hu J, et al. Multi-walled Bi2O3/Bi@C particles as a high-performance anode material for lithium-ion batteries. Journal of Energy Storage. 2024; 102: 114024. doi: 10.1016/j.est.2024.114024
20. Liu X, Xie J, Tang Y, et al. Bi@C sandwiched carbon nanolayers enables remarkable cyclability at high current density for lithium-ion batteries. Applied Surface Science. 2023; 613: 155996. doi: 10.1016/j.apsusc.2022.155996
21. Li C, Yang D, Jiang Z, et al. Novel crystalline Bi/amorphous Bi2O3 hybrid nanoparticles embedded in N-doped carbon for high-performance lithium-ion battery anodes. Journal of Physics and Chemistry of Solids. 2025; 196: 112330. doi: 10.1016/j.jpcs.2024.112330
22. Yu M, Dong Z, Mu J, et al. Fabrication of permselective interlayer with uniform pore structure and in-situ sulfurized Co4S3 for high performance lithium sulfur battery. Separation and Purification Technology. 2024; 341: 126664. doi: 10.1016/j.seppur.2024.126664
23. Jiang M, Hu Y, Mao B, et al. Strain-regulated Gibbs free energy enables reversible redox chemistry of chalcogenides for sodium ion batteries. Nature Communications. 2022; 13(1): 5588. doi: 10.1038/s41467-022-33329-2
24. Hu Y, Li H, Gu H, et al. Al3+ pre-intercalation and g-C3N4 coating synergistically modulate gibbs free energy for robust and compatible MnO2 cathodes in aqueous aluminum batteries. Chemical Engineering Journal. 2025; 507: 160532. doi: 10.1016/j.cej.2025.160532
25. Chen X, Wang P, Zhang Z, Yin L. Bi2S3–CoS@C core-shell structure derived from ZIF-67 as anodes for high performance lithium-ion batteries. Journal of Alloys and Compounds. 2020; 844: 156008. doi: 10.1016/j.jallcom.2020.156008
26. Wang H, Ma J, Liu S, et al. CoS/CNTs hybrid structure for improved performance lithium ion battery. Journal of Alloys and Compounds. 2016; 676: 551–556. doi: 1016/j.jallcom.2016.03.132
27. Chen Y, Lu C, Yuan S, et al. N-doped carbon nanotubes and CoS@NC composites as a multifunctional separator modifier for advanced lithium-sulfur batteries. Journal of Colloid and Interface Science. 2025; 680: 405–417. doi: 10.1016/j.jcis.2024.11.108
28. Cheng W, Di H, Shi Z, et al. Synthesis of ZnS/CoS/CoS2@N-doped carbon nanoparticles derived from metal-organic frameworks via spray pyrolysis as anode for lithium-ion battery. Journal of Alloys and Compounds. 2020; 831: 154607. doi: 10.1016/j.jallcom.2020.154607
29. Dong C, Guo L, Li H, et al. Rational fabrication of CoS2/Co4S3@N-doped carbon microspheres as excellent cycling performance anode for half/full sodium ion batteries. Energy Storage Materials. 2020; 25: 679-686. doi: 10.1016/j.ensm.2019.09.019.
30. Cao Y, Zhou X, Gao F. Reconfiguration of metal-organic frameworks to form ultrafine Bi dots as an excellent high-current performance of lithium-ion battery anode. Journal of Alloys and Compounds. 2024; 992: 174650. doi: 10.1016/j.jallcom.2024.174650.
31. Fu H, Shi C, Nie J, et al. Bi2O3 nanospheres coated in electrospun carbon spheres derived Bi@C used as anode materials for lithium-ion batteries. Journal of Alloys and Compounds. 2022; 918: 165666. doi: 10.1016/j.jallcom.2022.165666
32. Wang Z, Qi J, Han L, et al. CoS2 nanoparticles embedded in N-doped hollow carbon nanotubes as anode materials for high performance lithium-ion battery. Materials Letters. 2024; 364: 136332. doi: 10.1016/j.matlet.2024.136332
33. Li Y, Bao Y, Han B, et al. 3D-structured Co9S8@NSG prepared using deep eutectic solvents as high-performance anode material of lithium-ion batteries. FlatChem. 2024; 45: 100635. doi: 10.1016/j.flatc.2024.100635
34. Gao J, Wang X, Huang Y, et al. Hollow core-shell structured CNT/PAN@Co9S8@C coaxial nanocables as high-performance anode material for lithium ion batteries. Journal of Alloys and Compounds. 2021; 853: 157354. doi: 10.1016/j.jallcom.2020.157354
35. Chen Q, Hu J, Xia Q, Zhang L. Complexation-assisted polymerization for the synthesis of functional silicon oxycarbonitride with well-dispersed ultrafine CoS as high-performance anode for lithium-ion batteries. Journal of Alloys and Compounds. 2023; 949: 169824. doi: 10.1016/j.jallcom.2023.169824