Global energy agencies and commissions report a sharp increase in energy demand based on commercial, industrial, and residential activities. At this point, we need energy-efficient and high-performance systems to maintain a sustainable environment. More than 30% of the generated electricity has been consumed by HVAC-R units, and heat exchangers are the main components affecting the overall performance. This study combines experimental measurements, numerical investigations, and ANN-aided optimization studies to determine the optimal operating conditions of an industrial shell and tube heat exchanger system. The cold/hot stream temperature level is varied between 10 ℃ and 50 ℃ during the experiments and numerical investigations. Furthermore, the flow rates are altered in a range of 50–500 L/h to investigate the thermal and hydraulic performance under laminar and turbulent regime conditions. The experimental and numerical results indicate that U-tube bundles dominantly affect the total pumping power; therefore, the energy consumption experienced at the cold side is about ten times greater the one at the hot side. Once the required data sets are gathered via the experiments and numerical investigations, ANN-aided stochastic optimization algorithms detected the C10H50 scenario as the optimal operating case when the cold and hot stream flow rates are at 100 L/h and 500 L/h, respectively.
To study the environment of the Kipushi mining locality (LMK), the evolution of its landscape was observed using Landsat images from 2000 to 2020. The evolution of the landscape was generally modified by the unplanned expansion of human settlements, agricultural areas, associated with the increase in firewood collection, carbonization, and exploitation of quarry materials. The problem is that this area has never benefited from change detection studies and the LMK area is very heterogeneous. The objective of the study is to evaluate the performance of classification algorithms and apply change detection to highlight the degradation of the LMK. The first approach concerned the classifications based on the stacking of the analyzed Landsat image bands of 2000 and 2020. And the second method performed the classifications on neo-images derived from concatenations of the spectral indices: Normalized Difference Vegetation Index (NDVI), Normalized Difference Building Index (NDBI) and Normalized Difference Water Index (NDWI). In both cases, the study comparatively examined the performance of five variants of classification algorithms, namely, Maximum Likelihood (ML), Minimum Distance (MD), Neural Network (NN), Parallelepiped (Para) and Spectral Angle Mapper (SAM). The results of the controlled classifications on the stacking of Landsat image bands from 2000 and 2020 were less consistent than those obtained with the index concatenation approach. The Para and DM classification algorithms were less efficient. With their respective Kappa scores ranging from 0.27 (2000 image) to 0.43 (2020 image) for Para and from 0.64 (2000 image) to 0.84 (2020 image) for DM. The results of the SAM classifier were satisfactory for the Kappa score of 0.83 (2000) and 0.88 (2020). The ML and NN were more suitable for the study area. Their respective Kappa scores ranged between 0.91 (image 2000) and 0.99 (image 2020) for the LM algorithm and between 0.95 (image 2000) and 0.96 (image 2020) for the NN algorithm.
Paraffin wax is the most common phase change material (PCM) that has been broadly studied, leading to a reliable optimal for thermal energy storage in solar energy applications. The main advantages of paraffin are its high latent heat of fusion and low melting point that appropriate solar thermal energy application. In addition to its accessibility, ease of use, and ability to be stored at room temperature for extended periods of time, Nevertheless, improving its low thermal conductivity is still a big, noticeable challenge in recently published work. In this work, the effect of adding nano-Cu2O, nano-Al2O3 and hybrid nano-Cu2O-Al2O3 (1:1) at different mass concentrations (1, 3, and 5 wt%) on the thermal characteristics of paraffin wax is investigated. The measured results showed that the peak values of thermal conductivity and diffusivity are achieved at a wight concentration of 3% when nano-Cu2O and nano-Al2O3 are added to paraffin wax with significant superiority for nano-Cu2O. While both of those thermal properties are negatively affected by increasing the concentration beyond this value. The results also showed the excellence of the proposed hybrid nanoparticles compared to nano-Cu2O and nano-Al2O3 as they achieve the highest values of thermal conductivity and diffusivity at a weight concentration of 5.0 wt%.
In most studies on hydroclimatic variability and trend, the notion of change point detection analysis of time series data has not been considered. Understanding the system is crucial for managing water resources sustainably in the future since it denotes a change in the status quo. If this happened, it is difficult to distinguish the time series data’s rising or falling tendencies in various areas when we look at the trend analysis alone. This study’s primary goal was to describe, quantify, and confirm the homogeneity and change point detection of hydroclimatic variables, including mean annual, seasonal, and monthly rainfall, air temperature, and streamflow. The method was employed using the four-homogeneity test, i.e., Pettitt’s test, Buishand’s test, standard normal homogeneity test, and von Neumann ratio test at 5% significance level. In order to choose the homogenous stations, the test outputs were divided into three categories: “useful”, “doubtful”, and “suspect”. The results showed that most of the stations for annual rainfall and air temperature were homogenous. It is found that 68.8% and 56.2% of the air temperature and rainfall stations respectively, were classified as useful. Whereas, the streamflow stations were classified 100% as useful. Overall, the change point detection analyses timings were found at monthly, seasonal, and annual time scales. In the rainfall time series, no annual change points were detected. In the air temperature time series except at Edagahamus station, all stations experienced an increasing change point while the streamflow time series experienced a decreasing change point except at Agulai and Genfel hydro stations. While alterations in streamflow time series without a noticeable change in rainfall time series recommend the change is caused by variables besides rainfall. Most probably the observed abrupt alterations in streamflow could result from alterations in catchment characteristics like the subbasin’s land use and cover. These research findings offered important details on the homogeneity and change point detection of the research area’s air temperature, rainfall, and streamflow necessary for the planers, decision-makers, hydrologists, and engineers for a better water allocation strategy, impact assessment and trend analyses.
Forest is the main carbon sink of terrestrial ecosystem. Due to the unique growth characteristics of plants, the response of their growth status and physiological activities to climate change will affect the carbon cycle process of forest ecosystem. Based on the local scale CO2 flux and temperature observation data recorded by the FLUXNET registration site and Harvard Forest FLUX observation tower from 2000 to 2012, combined with the phenological model, this paper analyzes the impact of temperature changes on CO2 flux in temperate forest ecosystems. The results show that: (1) the maximum NEE in 2000–2012 was 298.13 g·m-2·a-1, which occurred in 2010. Except in the 2010 and 2011, the annual NEE in other years was negative. (2) NEE, GPP, temperature and phenology models have good fitting effects (R2 > 0.8), which shows that the stable period of photosynthesis in temperate mixed forest ecosystem is mainly concentrated in summer, and vegetation growth is the dominant factor of carbon cycle in temperate mixed forest ecosystem. (3) The linear fitting results of the change time points of air temperature (maximum point, minimum point and 0 point date) and the change time points of NEE and GPP (maximum point, minimum point and 0 point date) show that there is a significant positive correlation between air temperature and CO2 flux (P < 0.01), and the change of air temperature affects the carbon cycle process of temperate mixed forest ecosystem.
Copyright © by EnPress Publisher. All rights reserved.