In this paper, a series of Li3V2(PO4)3/C composite nanofibers is prepared by a facile and environmentally friendly electrospinning method and calcined under different temperatures. The LVP nanofiber calcined under 900 ℃ exhibits the best electrochemical performance. The bicontinuous morphologies of LVP/CNF are the fibers shrunk and the LVP crystals simultaneously grown. At the range of 3.0–4.3 V, LVP/CNF obtained under 900 ℃ delivers the initial capacity of 135 mAh/g, close to the theoretical capacity of LVP. Even at high current density, the sample of LVP/CNF still presents good electrochemical performance.
An α, α′-dipyridyl adduct of a complex compound hexaaquatribenzene-1,2,4,5-tetracarbonatotetra iron (III) with porous structure was synthesized for the first time. According to the results of elemental, X-ray, IR-spectroscopic and differential-thermal analyses the individuality, chemical formula, thermal destruction, and form of coordination of acidic anion and dipyridyl were established. During interaction of a complex compound with dipyridyl, it completely loses all crystallization molecule of water resulting in a compound with a chemical formula of Fe4(C6H2(COO)4)3(dpy)2(dipyridyl). Using the identification of diffraction pattern the parameters of lattice cell of the complex compound were determined.
In this paper silver nanoparticles (NPs) which are synthesized by a simple plasma arc discharge method, that is a kind of electrochemical methods, are examined. The method is very simple and silver NPs are obtained very fast by means of two polished silver plates and electrochemical cell. The effects of changing some terms of the experiment including using Hydrogen peroxide (H2O2), temperature and the medium of experiment on oxygen percent and crystalline structure of silver NPs have been studied by transmission electron microscopy, UV-visible spectrophotometery, and X-ray diffraction. Water medium gets larger nanoparticles with less oxygen content compare to air medium. The size of synthesized nanoparticles become smaller and they also become more spherical by using H2O2 in air medium. In water medium, the size and concentration of the silver crystallite increase by temperature growth and adding H2O2 respectively.
Bael or Aegle marmelos Corrêa is considered a sacred tree by Hindus and is offered to Lord Shiva while worshipping. It grows in the Indian subcontinent and Southeast Asia and is called by various names in different regions. Bael has been used as a traditional medicine in India and other Southeast Asian countries to treat various ailments, including diarrhea, chronic dysentery, constipation, gonorrhea, catarrh, diabetes, deafness, inflammations, ulcerated intestinal mucosa, intermittent fever, melancholia, heart palpitation, and also to control fertility. The ethnomedicinal properties of Bael are owing to its ability to synthesize alkaloids, cardiac glycosides, anthocyanins, flavonoids, steroids, saponins, terpenoids, tannins, lignins, quinones, coumarins, proteins, carbohydrates, amino acids, reducing sugars, fats, and oils. The aegeline, auroptene, umbelliferone, psoralene, marmin, imperatorin, xylorhamnoarabinogalactan I pectic polysaccharide and skimmianine are synthesized by different parts of Bael, and they have shown antibacterial, anti-inflammatory, analgesic, anti-allergic, anthelmintic, antidiabetic, anticancer, cardioprotective and neuroprotective activities in various experimental models. The present review has been written consulting various publications, and different websites including Google Scholar, Pubmed, ScienceDirect, and Google.
The objective of this work was to evaluate the effect of potassium concentrations applied via fertigation on the growth, yield and chemical composition of eggplant ‘Ciça’ in a distroferric red Latosol. The treatments were composed of five concentrations of K2O (0, 36, 72, 108 and 144 kg ha-1 supplied via fertigation), using potassium chloride as a source, divided into six applications. The irrigation system was of the drip type and irrigation management was done via a “Class A” evaporometer tank. Harvest started at 62 days after transplanting (DAT) and lasted for five months. The variables evaluated were: plant height, number of leaves, fresh fruit mass, number of fruits per plant, yield per plant, productivity and classification of the fruits according to their length and diameter. At 85 DAT, fruit were collected for characterization as to the percentage of lipids, proteins and fibers. Although the potassium fertigation in cover provided a reduction in the production and productivity, the concentrations of 36 kg ha-1 and 72 kg ha-1 of K2O applied via fertigation, increased the physical-chemical characteristics of the fruits.
The importance of improving industrial transformation processes for more efficient ones is part of the current challenges. Specifically, the development of more efficient processes in the production of biofuels, where the reaction and separation processes can be intensified, is of great interest to reduce the energy consumption associated with the process. In the case of Biodiesel, the process is defined by a chemical reaction and by the components associated to the process, where the thermochemical study seeks to develop calculations for the subsequent understanding of the reaction and purification process. Thus, the analysis of the mixture of the components using the process simulator Aspen Plus V9® unravels the thermochemical study. The UNIFAC-DMD thermodynamic method was used to estimate the binary equilibrium parameters of the reagents using the simulator. The analyzed aspects present the behavior of the components in different temperature conditions, the azeotropic behavior and the determined thermochemical conditions.
Copyright © by EnPress Publisher. All rights reserved.