The cars industry has undergone significant technological advancements, with data analytics and artificial intelligence (AI) reshaping its operations. This study aims to examine the revolutionary influence of artificial intelligence and data analytics on the cars sector, particularly in terms of supporting sustainable business practices and enhancing profitability. Technology-organization-environment model and the triple bottom line technique were both used in this study to estimate the influence of technological factors, organizational factors, and environmental factors on social, environmental (planet), and economic. The data for this research was collected through a structured questionnaire containing closed questions. A total of 327 participants responded to the questionnaire from different professionals in the cars sector. The study was conducted in the cars industry, where the problem of the study revolved around addressing artificial intelligence in its various aspects and how it can affect sustainable business practices and firms’ profitability. The study highlights that the cars industry sector can be transformed significantly by using AI and data analytics within the TOE framework and with a focus on triple bottom line (TBL) outputs. However, in order to fully benefit from these advantages, new technologies need to be implemented while maintaining moral and legal standards and continuously developing them. This approach has the potential to guide the cars industry towards a future that is environmentally friendly, economically feasible, and socially responsible. The paper’s primary contribution is to assist professionals in the industry in strategically utilizing Artificial Intelligence and data analytics to advance and transform the industry.
In the era of rapid information technology development, artificial intelligence (AI) and virtual reality (VR) technologies have gradually infiltrated the field of university English teaching, brought significant applications and impacted to English language learning in listening, speaking, writing, translation, and personalized learning. AI plays a vital role as an auxiliary teaching method in university English instruction, and the integration of VR technology further enhances teaching efficiency. This research will propose relevant recommendations to provide theoretical references for university English education in the age of AI, while also offering insights and guidance to educators in the education industry during the informatization reform of education.
The growth of mobile Internet has facilitated access to information by minimizing geographical barriers. For this reason, this paper forecasts the number of users, incomes, and traffic for operators with the most significant penetration in the mobile internet market in Colombia to analyze their market growth. For the forecast, the convolutional neural network (CNN) technique is used, combined with the recurrent neural network (RNN), long short-term memory network (LSTM), and gated recurrent unit (GRU) techniques. The CNN training data corresponds to the last twelve years. The results currently show a high concentration in the market since a company has a large part of the market; however, the forecasts show a decrease in its users and revenues and the growth of part of the competition. It is also concluded that the technique with the most precision in the forecasts is CNN-GRU.
In this paper, we will provide an extensive analysis of how Generative Artificial Intelligence (GenAI) could be applied when handling Supply Chain Management (SCM). The paper focuses on how GenAI is more relevant in industries, and for instance, SCM where it is employed in tasks such as predicting when machines are due for a check-up, man-robot collaboration, and responsiveness. The study aims to answer two main questions: (1) What prospects can be identified when the tools of GenAI are applied in SCM? Secondly, it aims to examine the following question: (2) what difficulties may be encountered when implementing GenAI in SCM? This paper assesses studies published in academic databases and applies a structured analytical framework to explore GenAI technology in SCM. It looks at how GenAI is deployed within SCM and the challenges that have been encountered, in addition to the ethics. Moreover, this paper also discusses the problems that AI can pose once used in SCM, for instance, the quality of data used, and the ethical concerns that come with, the use of AI in SCM. A grasp of the specifics of how GenAI operates as well as how to implement it successfully in the supply chain is essential in assessing the performance of this relatively new technology as well as prognosticating the future of generation AI in supply chain planning.
Universities play a key role in university-industry-government interactions and are important in innovation ecosystem studies. Universities are also expected to engage with industries and governments and contribute to economic development. In the age of artificial intelligence (AI), governments have introduced relevant policies regarding the AI-enabled innovation ecosystem in universities. Previous studies have not focused on the provision of a dynamic capabilities perspective on such an ecosystem based on policy analysis. This research work takes China as a case and provides a framework of AI-enabled dynamic capabilities to guide how universities should manage this based on China’s AI policy analysis. Drawing on two main concepts, which are the innovation ecosystem and dynamic capabilities, we analyzed the importance of the AI-enabled innovation ecosystem in universities with governance regulations, shedding light on the theoretical framework that is simultaneously analytical and normative, practical, and policy-relevant. We conducted a text analysis of policy instruments to illustrate the specificities of the AI innovation ecosystem in China’s universities. This allowed us to address the complexity of emerging environments of innovation and draw meaningful conclusions. The results show the broad adoption of AI in a favorable context, where talents and governance are boosting the advance of such an ecosystem in China’s universities.
Artificial intelligence (AI) has rapidly evolved, transforming industries and addressing societal challenges across sectors such as healthcare and education. This study provides a state-of-the-art overview of AI research up to 2023 through a bibliometric analysis of the 50 most influential papers, identified using Scopus citation metrics. The selected works, averaging 74 citations each, encompass original research, reviews, and editorials, demonstrating a diversity of impactful contributions. Over 300 contributing authors and significant international collaboration highlight AI’s global and multidisciplinary nature. Our analysis reveals that research is concentrated in core journals, as described by Bradford’s Law, with leading contributions from institutions in the United States, China, Canada, the United Kingdom, and Australia. Trends in authorship underscore the growing role of generative AI systems in advancing knowledge dissemination. The findings illustrate AI’s transformative potential in practical applications, such as enabling early disease detection and precision medicine in healthcare and fostering adaptive learning systems and accessibility in education. By examining the dynamics of collaboration, geographic productivity, and institutional influence, this study sheds light on the innovation drivers shaping the AI field. The results emphasize the need for responsible AI development to maximize societal benefits and mitigate risks. This research provides an evidence-based understanding of AI’s progress and sets the stage for future advancements. It aims to inform stakeholders and contribute to the ongoing scientific discourse, offering insights into AI’s impact at a time of unprecedented global interest and investment.
Copyright © by EnPress Publisher. All rights reserved.