Public-private partnerships (PPPs) are vital for infrastructure development in developing countries, integrating private efficiency with public oversight. However, PPP models often face risks, particularly in Indonesia’s water sector, due to its unique geographical and regulatory challenges. This study aims to identify and evaluate risk factors specific to drinking water PPP projects in Indonesia. Using a quantitative approach, structured questionnaires were distributed to experts in the sector, and the data was analyzed using a fuzzy evaluation method. Risks were categorized into location, design and construction, financial, operational, revenue, and political. The study emphasizes that effective risk management, including identification, analysis, and mitigation, is essential for project success. It highlights the importance of stakeholder involvement and flexible risk management strategies. Comprehensive and proactive risk management is key to the success of drinking water infrastructure projects. The research suggests that an integrated and collaborative approach among stakeholders can enhance risk management effectiveness. These findings provide valuable insights for policymakers, project managers, investors, and other stakeholders, underscoring the necessity for adaptable regulatory frameworks and robust policy guidelines to improve the sustainability and efficacy of future water-related PPPs.
The successful execution of large-scale infrastructure projects is essential for economic growth and societal development, but these projects are too often beset with financial risks. The main financial risks related to infrastructure projects, including cost overrun, funding uncertainty, currency fluctuation, and regulatory change are examined in this research. The study identifies and assesses the magnitude and frequency of these risks by combining surveys and analysis of financial reports. The findings show that current risk management strategies, including hedging, contingency funds, and public-private partnerships, are often unsuitable to respond to the specific needs of financial uncertainties. The research suggests the need for an all-encompassing financial risk management framework that relies on real-time data analysis and a cocktail of risk assessment tools. Additionally, the development of strategic tailored approaches to address financial risk recovery depends on proactive stakeholder engagement. This research complements the existing literature on risk management in infrastructure projects by highlighting the financial dimensions of risk management and suggesting future research on advanced financial tools and technologies. Ultimately, large-scale infrastructure project sustainability and success contribute to economic stability and societal well-being can only be achieved through effective financial risk management.
The rapidly growing construction industry often deals with complex and dynamic projects that pose significant safety risks. One of the state-owned companies in Indonesia is engaged in large-scale toll road construction projects with a high incidence of workplace accidents. This study aims to improve safety performance in toll road construction by implementing the Scrum framework. The study uses a System Dynamics approach to model interactions between the Scrum framework, project management, and work safety subsystems. Various scenarios were designed by modifying controlled variables and system structures, including introducing a punishment entity. These scenarios were evaluated based on their impact on reducing incidents and the incident rate over the project period. The results indicate that the combined scenario significantly reduces incidents and incident rates in different conditions. The study also finds a strong relationship between Scrum framework implementation and improved safety performance, demonstrating a reduction in incidents and incident rates by over 50% compared to existing conditions. This research underlines the effectiveness of the Scrum framework in enhancing safety in construction projects.
This study sought an innovative quality management framework for Chinese Prefabricated Buildings (PB) projects. The framework combines TQM, QSP, Reconstruction Engineering, Six Sigma (6Σ), Quality Cost Management, and Quality Diagnosis Theories. A quantitative assessment of a representative sample of Chinese PB projects and advanced statistical analysis using Structural Equation Modeling supported the framework, indicating an excellent model fit (CFI = 0.92, TLI = 0.90, RMSEA = 0.06). The study significantly advances quality management and industrialized building techniques, but it also emphasizes the necessity for ongoing research, innovation, and information exchange to address the changing problems and opportunities in this dynamic area. In addition, this study’s findings and recommendations can help construction stakeholders improve quality performance, reduce construction workload and cost, minimize defects, boost customer satisfaction, boost productivity and efficiency in PB projects, and boost the Chinese construction industry’s growth and competitiveness.
This study aims to identify the causes of delays in public construction projects in Thailand, a developing country. Increasing construction durations lead to higher costs, making it essential to pinpoint the causes of these delays. The research analyzed 30 public construction projects that encountered delays. Delay causes were categorized into four groups: contractor-related, client-related, supervisor-related, and external factors. A questionnaire was used to survey these causes, and the Relative Importance Index (RII) method was employed to prioritize them. The findings revealed that the primary cause of delays was contractor-related financial issues, such as cash flow problems, with an RII of 0.777 and a weighted value of 84.44%. The second most significant cause was labor issues, such as a shortage of workers during the harvest season or festivals, with an RII of 0.773. Additionally, various algorithms were used to compare the Relative Importance Index (RII) and four machine learning methods: Decision Tree (DT), Deep Learning, Neural Network, and Naïve Bayes. The Deep Learning model proved to be the most effective baseline model, achieving a 90.79% accuracy rate in identifying contractor-related financial issues as a cause of construction delays. This was followed by the Neural Network model, which had an accuracy rate of 90.26%. The Decision Tree model had an accuracy rate of 85.26%. The RII values ranged from 68.68% for the Naïve Bayes model to 77.70% for the highest RII model. The research results indicate that contractor financial liquidity and costs significantly impact construction operations, which public agencies must consider. Additionally, the availability of contractor labor is crucial for the continuity of projects. The accuracy and reliability of the data obtained using advanced data mining techniques demonstrate the effectiveness of these results. This can be efficiently utilized by stakeholders involved in construction projects in Thailand to enhance construction project management.
Copyright © by EnPress Publisher. All rights reserved.