In order to address severe siltation and enhance urban green spaces in Xianyang Lake, the research offers a sustainable solution by proposing an innovative integration of ecological dredging and landscape transformation. The key findings are as follows: Firstly, an ecological dredging mechanism was established by directly transporting sediment from Xianyang Lake to its central greenbelt, reducing dredging costs and environmental impact while creating a sustainable funding cycle through revenue from eco-tourism activities. Secondly, the landscape artistic conception of the central greenbelt was significantly improved by leveraging the natural distance between the lakeshore and the greenbelt, offering diverse viewing experiences and enhancing the cognitive abilities and urban life satisfaction of tourists. Thirdly, the project demonstrated substantial economic and social benefits, including revenue generation from paid activities like boat tours, increased public awareness of biodiversity through ecological education, and improved community well-being. The central greenbelt also enhanced the urban environment by improving air quality, mitigating the “heat island effect,” and providing habitats for wildlife. This integrated approach serves as a model for sustainable urban development, offering valuable insights for cities facing similar ecological challenges. Future research should focus on long-term monitoring to further evaluate the ecological and socio-economic impacts of such projects.
The construction industry is a significant contributor towards global environmental degradation and resource depletion, with developing economies facing unique challenges in adopting sustainable construction practices. This systematic review aims to investigate the gap in sustainable construction implementation among global counterparts. The study utilizes the P5 (People, Planet, Prosperity, Process, Products) Standard as a framework for evaluating sustainable construction project management based on environmental, social, and economic targets. A Systematic Literature Review from a pool of 994 Sustainable Construction Project Management (SCPM) papers is conducted utilizing the PRISMA methodology. Through rigorous Identification, Screening, and Eligibility Verification, an analysis is synthesized from 44 relevant literature discussing SCPM Implementations worldwide. The results highlight significant challenges in three main categories: environmental, social, and economic impacts. Social impacts are found as the most extensively researched, while environmental and economic impacts are less studied. Further analysis reveals that social impacts are a major concern in sustainable construction, with numerous studies addressing labor practices and societal well-being. However, there is a notable gap in research on human rights within the construction industry. Environmental impacts, such as resource utilization, energy consumption, and pollution, are less frequently addressed, indicating a need for more focused studies in these areas. Economic impacts, including local economic impact and business agility, are further substantially underrepresented in the literature, suggesting that economic viability is a critical yet underexplored aspect of sustainable construction. The findings underscore the need for further research in these areas to address the implementation challenges of sustainable project management effectively. This research contributes towards the overall research of global sustainable construction through the utilization of the P5 Standards as a new lens of determining sustainability performance for construction projects worldwide.
Traditional building heating warms entire rooms, often leaving some dissatisfied with uneven warmth. Recently, the personalized heating system has addressed this by providing targeted warmth, enhancing comfort and satisfaction. The personalized heating system in this study is a new enclosed personalized heating system consisting of a semi-enclosed heating box and an insulated chair covered with a thick blanket. The study compares the heating effects of semi-enclosed and enclosed localized heating systems on the body and examined changes in subjects’ thermal sensations. Due to the lower heat loss of the enclosed personalized heating system compared to the semi-enclosed version, it created thermal micro-environments with higher ambient temperatures. The maximum air temperature increase within the enclosed system was twice that of the semi-enclosed system, with the heating film surface temperature rising by up to 6.87 ℃. Additionally, the temperature of the skin could increase by as much as 6.19 ℃, allowing individuals to maintain thermal neutrality even when the room temperature dropped as low as 8 ℃. A two-factor repeated measures analysis of variance revealed differences in temperature sensitivity across various body regions, with the thighs showing a notably higher response under high-power heating conditions. The corrective energy and power requirements of the enclosed personalized heating system also made it more energy-efficient than other personalized heating systems, with a minimum value reaching 6.07 W/K.
Every production day in Nigeria, and in other oil producing countries, millions of barrels of produced water is generated. Being very toxic, remediation of the produced water before discharge into environment or re-use is very essential. An eco-friendly and cost effective approach is hereby reported for remediative pre-treatment of produced water (PW) obtained from Nigerian oilfield. In this approach, Telfairia occidentalis stem extract-silver nanoparticles (TOSE-AgNPs) were synthesized, characterized and applied as bio-based adsorbent for treating the PW in situ. The nanoparticles were of average size 42.8 nm ± 5.3 nm, spherical to round shaped and mainly composed of nitrogen and oxygen as major atoms on the surface. Owing to the effect of addition of TOSE-AgNPs, the initially high levels (mg/L) of Total Dissolved Solids (TDS), Biological Oxygen Demand (BOD) and TSS of 607, 3.78 and 48.4 in the PW were reduced to 381, 1.22 and 19.6, respectively, whereas DO and COD improved from 161 and 48.4 to 276 and 19.6 respectively, most of which fell within WHO and US-EPA safe limits. Particularly, the added TOSE-AgNPs efficiently removed Pb (II) ions from the PW at temperatures between 25 ℃ to 50 ℃. Removal of TOSE-AgNPs occurred through the adsorption mechanism and was dependent contact time, temperature and dose of TOSE-AgNPs added. Optimal remediation was achieved with 0.5 g/L TOSE-AgNPs at 30 ℃ after 5 h contact time. Adsorption of Pb (Ⅱ) ions on TOSE-AgNPs was spontaneous and physical in nature with remediation efficiency of over 82% of the Pb (Ⅱ) ions in solution. Instead of discarding the stem of Telfairia occidentalis, it can be extracted and prepared into a new material and applied in the oilfield as reported here for the first time.
As cities continue to face the increasing demands of urban transportation and the need for sustainable mobility solutions, the integration of intelligent transportation systems (ITS) with smart city infrastructure emerges as a promising approach. This paper presents a novel framework for integrating ITS with smart city infrastructure, aiming to address the challenges of urban transportation and promote sustainable mobility. The framework is developed through a comprehensive literature review, case studies, and stakeholder interviews, providing significant insights into the integration process. Our research outlines the key components of smart city infrastructure that can be integrated with ITS, highlights the benefits of integration, and identifies the challenges and barriers that need to be addressed. Additionally, we propose and apply evaluation methods to assess the effectiveness of ITS integration with smart city infrastructure. The results demonstrate the novelty and significance of this framework, as it significantly reduces traffic congestion, improves air quality, and enhances citizen satisfaction. This paper contributes to the existing literature by providing a comprehensive approach to integrating ITS with smart city infrastructure, offering a transformative solution for urban transportation challenges.
The study is focusing on cyberspace—a new type of space mastered by humans with the help of digital technologies. This systematic review uses SPAR-4-SLR protocol to analyze over 30 years of scholarly research indexed in Scopus database, highlighting five time periods: before 1995, 1996–2008, 2009–2012, 2013–2019, and after 2020. A final sample of 6645 publications in social sciences, Business, management and accounting (BMA), and Economics, econometrics and finance (EEF) was analyzed across multiple parameters, including: chronology, types of documents, sources, countries, institutions, authors, topics, and most cited publications. The review has systematized information about the most influential organizations and individuals involved in cyberspace research. First of all, these are researchers from the United States, the United Kingdom, and China. Key journals that publish research on the topic have been identified, and a ranked list of funding organizations supporting research on the social and economic aspects of cyberspace are identified. The study provides insights into the achievements of the social and economic sciences in cyberspace over the past 30 years. The results will be useful to scholars who seek for a general overview on the topic of cyberspace, as well as experts and policymakers developing mechanisms and tools for regulating cyberspace as a mixture of the virtual and real worlds.
Copyright © by EnPress Publisher. All rights reserved.