This comprehensive review examines recent innovations in green technology and their impact on environmental sustainability. The study analyzes advancements in renewable energy, sustainable transportation, waste management, and green building practices. To accomplish the specific objectives of the current study, the exploration was conducted using the PRISMA guidelines in major academic databases, such as Web of Science, Scopus, IEEE Xplore, and ScienceDirect. Through a systematic literature review with a research influence mapping technique, we identified key trends, challenges, and future directions in green technology. Our aggregate findings suggest that while significant progress has been made in reducing environmental impact, barriers such as high initial costs and technological limitations persist. Hence, for the well-being of societal communities, green technology innovations and practices should be adopted more widely. By investing in sustainable practices, communities can reduce environmental degradation, improve public health, and create resilient infrastructures that support both ecological and economic stability. Green technologies, such as renewable energy sources, eco-friendly construction, efficient waste management systems, and sustainable agriculture, not only mitigate pollution but also lower greenhouse gas emissions, thereby combating climate change. Finally, the paper concludes with recommendations for policymakers and industry leaders to foster the widespread adoption of green technologies.
This study validates the Intercultural Competence and Inclusion in Education Scale (ICIES), a novel instrument designed to assess students’ perceptions of inclusivity and intercultural competence in multiethnic secondary schools. Using a sample of 276 high school students from Western Romania, the ICIES identified three dimensions: ethnic appreciation and support, intercultural engagement and integration, and school unity and cohesion. Exploratory factor analysis confirmed the scale’s structural validity, while network analysis revealed key interconnections among its components. Findings highlight the critical role of inclusive teaching strategies and school cohesion in fostering intercultural competence. The ICIES provides educators and policymakers with actionable insights for designing interventions that promote empathy, mutual respect, and a sense of belonging in diverse school settings. These results contribute to the development of educational policies aimed at fostering inclusion and addressing the needs of increasingly multicultural classrooms.
Graphene, an innovative nanocarbon, has been discovered as a significant technological material. Increasing utilization of graphene has moved research towards the development of sustainable green techniques to synthesize graphene and related nanomaterials. This review article is basically designed to highlight the significant sustainability aspects of graphene. Consequently, the sustainability vision is presented for graphene and graphene nanocomposites. Environmentally sustainable production of graphene and ensuing nanomaterials has been studied. The formation of graphene, graphene oxide, reduced graphene oxide, and other derivatives has been synthesized using ecological carbon and green sources, green solvents, non-toxic reagents, and green routes. Furthermore, the utilization of graphene for the conversion of industrial polymers to sustainable recycled polymers has been studied. In addition, the recycled polymers have also been used to form graphene as a sustainable method. The implication of graphene in the sustainable energy systems has been investigated. Specifically, high specific capacitance and capacitance retention were observed for graphene-based supercapacitor systems. Subsequently, graphene may act as a multi-functional, high performance, green nanomaterial with low weight, low price, and environmental friendliness for sustainable engineering and green energy storage applications. However, existing challenges regarding advanced material design, processing, recyclability, and commercial scale production need to be overcome to unveil the true sustainability aspects of graphene in the environmental and energy sectors.
The world has never been more developed, yet humanity is on the brink of irreversible environmental loss. Despite the urgency of the situation, there is a limited body of studies addressing environmental concerns in higher education institution, particularly in developing countries, i.e., Saudi Arabia. Sustainable development is the only viable solution, albeit it requires the courage to initiate and sustain efforts dedicated to preserving the environment for the well-being of future generation. The article delves into this issue and examines the impact of environmental education program (EEP) on environmental performance (EP) via waste minimization behaviour (WMB). The research involved meticulous data collection from a sample of 597 students, representing diverse genders and academic specialties at the esteemed public university—King Faisal University (KFU) in Saudi Arabia. The study used statistical software (including SPSS and AMOS, v 25) for rigorous analysis and revealed significant findings. Firstly, the study showed a significant and positive relationship between EEP and EP. Secondly, it revealed a significant and positive association between EEP and WMB. Thirdly, the study ascertained a significant and positive association between WMB and EP. Finally, the study found that the relationship between EEP and EP remains significant even after presenting WMB as a mediator, proposing that WMB has a partial mediation role between EEP and EP. The results highlighted the significance role of EEP in stimulating WMB and achieving EP in the Saudi universities, which contributes to national initiative of green Saudia.
Copyright © by EnPress Publisher. All rights reserved.