Current study examines the intervening role of team creativity for the relationship of four kinds of KM practice with innovation and the moderating effect of proactiveness in IT companies based on a Knowledge-Based View (KBV). Data was collected from 316 employees of IT companies who engage in software development in teams with the help of a simple random sampling method. Results indicate that KM practices have a positive impact on innovation. Also, team creativity plays mediating role in the relation of two KM practices i.e., knowledge sharing and knowledge application with innovation. Whereas proactiveness plays a positive moderating role in the relation of knowledge application and knowledge generation with innovation. Moreover, it plays a negative moderating role in relation of Knowledge sharing with innovation. This research adds to the body of literature by suggesting a framework of knowledge diffusion, knowledge storage, knowledge generation, knowledge application, team creativity, proactiveness, and innovation in a single model. This research also adds to the body of literature by proposing the intervening role of team creativity in the relationships of knowledge diffusion, knowledge storage, knowledge generation, and knowledge application, with innovation. The results of this research help the managers to use the team creativity concept to intervene in relation of knowledge diffusion, knowledge storage, knowledge generation, and knowledge application, with innovation. The results of the current study also give valuable insights to managers into why they can use the proactiveness to moderate the relations of knowledge diffusion, knowledge storage, knowledge generation, and knowledge application, with innovation. Current study adds in the body of literature by proposing the entire manuscript on the basis of two theories i.e., Knowledge-Based View (KBV) builds on and expands the RBV.
This comprehensive review explores the forefront of nanohybrid materials, focusing on the integration of coordination materials in various applications, with a spotlight on their role in the development of flexible solar cells. Coordination material-based nanohybrids, characterized by their unique properties and multifunctionality, have garnered significant attention in fields ranging from catalysis and sensing to drug delivery and energy storage. The discussion investigates the synthesis methods, properties, and potential applications of these nanohybrids, underscoring their versatility in materials science. Additionally, the review investigates the integration of coordination nanohybrids in perovskite solar cells (PSCs), showcasing their ability to enhance the performance and stability of next-generation photovoltaic devices. The narrative further expands to encompass the synthesis of luminescent nanohybrids for bioimaging purposes and the development of layered, two-dimensional (2D) material-based nanostructured hybrids for energy storage and conversion. The exploration culminates in an examination of the synthesis of conductive polymer nanostructures, elucidating their potential in drug delivery systems. Last but not least, the article discusses the cutting-edge realm of flexible solar cells, emphasizing their adaptability and lightweight design. Through a systematic examination of these diverse nanohybrid materials, this review sheds light on the current state of the art, challenges, and prospects, providing valuable insights for researchers and practitioners in the fields of materials science, nanotechnology, and renewable energy.
Cobalt-ion batteries are considered a promising battery chemistry for renewable energy storage. However, there are indeed challenges associated with co-ion batteries that demonstrate undesirable side reactions due to hydrogen gas production. This study demonstrates the use of a nanocomposite electrolyte that provides stable performance cycling and high Co2+ conductivity (approximately 24 mS cm−1). The desirable properties of the nanocomposite material can be attributed to its mechanical strength, which remains at nearly 68 MPa, and its ability to form bonds with H2O. These findings offer potential solutions to address the challenges of co-dendrite, contributing to the advancement of co-ion batteries as a promising battery chemistry. The exceptional cycling stability of the co-metal anode, even at ultra-high rates, is a significant achievement demonstrated in the study using the nanocomposite electrolyte. The co-metal anode has a 3500-cycle current density of 80 mA cm−2, which indicates excellent stability and durability. Moreover, the cumulative capacity of 15.6 Ah cm−2 at a current density of 40 mA cm−2 highlights the better energy storage capability. This performance is particularly noteworthy for energy storage applications where high capacity and long cycle life are crucial. The H2O bonding capacity of the component in the nanocomposite electrolyte plays a vital role in reducing surface passivation and hydrogen evolution reactions. By forming strong bonds with H2O molecules, the polyethyne helps prevent unwanted reactions that can deteriorate battery performance and efficiency. This mitigates issues typically associated with excess H2O and ion presence in aqueous Co-ion batteries. Furthermore, the high-rate performance with excellent stability and cycling stability performance (>500 cycles at 8 C) of full Co||MnO2 batteries fabricated with this electrolyte further validates its effectiveness in practical battery configurations. These results indicate the potential of the nanocomposite electrolyte as a valuable and sustainable option, simplifying the development of reliable and efficient energy storage systems and renewable energy applications.
Copyright © by EnPress Publisher. All rights reserved.