This study aims to determine the effects of monosodium glutamate (MSG) dosage on the yield of long beans (Vigna sinensis L.) of the Peleton variety. The use of MSG as a food ingredient has been a topic of debate, but research on its impact on plant growth is still limited, especially regarding long beans. Therefore, this research is important for providing further understanding of the influence of MSG on long beans plants. The study was conducted from July to October 2023 in Mata Air Village, Central Kupang District, Kupang Regency, East Nusa Tenggara Province. The research method used was a Randomized Complete Block Design (RCBD) with 9 treatments and 3 replications. The treatments included: No MSG, MSG at doses of 2.5 g/plant, 5 g/plant, 7.5 g/plant, 10 g/plant, 12.5 g/plant, 15 g/plant, 17.5 g/plant, and 20 g/plant. Parameters observed included flowering age (days), number of pods (pieces), pod length (cm), and pod weight (g). Based on the results and discussion, it can be concluded that MSG application had a significant effect on the number, length, and weight of pods, but had a non-significant effect on flowering age. The treatment of 15 g/plant was identified as the optimal MSG dosage for the plants, resulting in the highest number of pods (16.2), longest pod length (60.4 cm), and highest pod weight (256.4 g/plant). This research is innovative in exploring the potential use of monosodium glutamate (MSG) on long beans plants, particularly the Peleton variety. The focus on MSG application as a growth stimulant is an innovative step that has been less studied previously. The discovery of the optimal MSG dosage (15 g/plant) for achieving the best results provides valuable information for farmers to enhance productivity efficiently, sustainably, and environmentally friendly. Information about MSG’s potential as a plant stimulant can serve as a starting point for more sustainable agricultural strategies aimed at optimizing available resources.
This study explores the primary drivers influencing sustainable project management (SPM) practices in the construction industry. This research study seeks to determine whether firms are primarily motivated by external pressures or internal values when embracing SPM practices. In doing so, this study contributes to the ongoing discourse on SPM drivers by considering coercive pressures (CP), ethical responsibility (ER), and green transformational leadership (GTL) as critical enablers facilitating a firm’s adoption of SPM practices. Based on data from 196 project management practitioners in Pakistan, structural equation modeling (PLS-SEM) was employed to test the hypothesized relationships. Results highlight that CP influences the management of sustainability practices in construction projects, signifying firms’ concern for securing legitimacy from various institutional actors. As an ‘intrinsic value’, ER emerges as a significant motivator for ecological stewardship, driven by a genuine commitment to promoting sustainable development. This study also unveils the significant moderating effect of GTL on the association among CP, ER, and SPM. Lastly, the results of IMPA reveal that ER slightly performs better than CP as it helps firms internalize the essence of sustainability. This research study expands our understanding of SPM drivers in construction projects by exploring the differential impact of external pressures and the firm’s intrinsic values. These findings provide valuable insights for policymakers and practitioners, aiding them in promoting SPM to attain sustainable development goals.
Dredging and reclamation operations are pivotal aspects of coastal engineering and land development. Within these tasks lie potential hazards for personnel operating dredging machinery and working within reclamation zones. Due to the specialized nature of the work environment, which deviates from conventional workplace settings, the risk of workplace accidents is significantly heightened. The aim of this study is to conduct a comprehensive risk analysis of the safety aspects related to dredging and reclamation activities, with the goal of enhancing safety and minimizing the frequency and severity of potential dangers. This research comprises a thorough risk analysis, integrating meticulous hazard identification from sample projects and literature reviews. It involves risk assessment by gathering insights from experts with direct working experience and aims to assess potential risks. The study focuses on defining effective risk management strategies, exemplified through a case study of a nearshore construction project in Thailand. The study identified numerous high and very high-risk factors in the assessment and analysis of occupational safety in dredging and reclamation work. Consequently, a targeted response was implemented to control and mitigate these risks to an acceptable level. The outcome of this study will provide a significant contribution to the advancement of guidelines and best practices for improving the safety of dredging and reclamation operations.
Copyright © by EnPress Publisher. All rights reserved.