This study thoroughly examined the use of different machine learning models to predict financial distress in Indonesian companies by utilizing the Financial Ratio dataset collected from the Indonesia Stock Exchange (IDX), which includes financial indicators from various companies across multiple industries spanning a decade. By partitioning the data into training and test sets and utilizing SMOTE and RUS approaches, the issue of class imbalances was effectively managed, guaranteeing the dependability and impartiality of the model’s training and assessment. Creating first models was crucial in establishing a benchmark for performance measurements. Various models, including Decision Trees, XGBoost, Random Forest, LSTM, and Support Vector Machine (SVM) were assessed. The ensemble models, including XGBoost and Random Forest, showed better performance when combined with SMOTE. The findings of this research validate the efficacy of ensemble methods in forecasting financial distress. Specifically, the XGBClassifier and Random Forest Classifier demonstrate dependable and resilient performance. The feature importance analysis revealed the significance of financial indicators. Interest_coverage and operating_margin, for instance, were crucial for the predictive capabilities of the models. Both companies and regulators can utilize the findings of this investigation. To forecast financial distress, the XGB classifier and the Random Forest classifier could be employed. In addition, it is important for them to take into account the interest coverage ratio and operating margin ratio, as these finansial ratios play a critical role in assessing their performance. The findings of this research confirm the effectiveness of ensemble methods in financial distress prediction. The XGBClassifier and RandomForestClassifier demonstrate reliable and robust performance. Feature importance analysis highlights the significance of financial indicators, such as interest coverage ratio and operating margin ratio, which are crucial to the predictive ability of the models. These findings can be utilized by companies and regulators to predict financial distress.
The article presents an answer to the current challenge about needs to form methodological approaches to the digital transformation of existing industrial enterprises (EIE). The paper develops a hypothesis that it is advisable to carry out the digital transformation of EIE based on considering it as a complex technical system using model-based system engineering (MBSE). The practical methodology based on MBSE for EIE digital representation creation are presented. It is demonstrated how different system models of EIE is created from a set of entities of the MBSE approach: requirements—unctions—components and corresponding matrices of interconnections. Also the principles and composition of tasks for system architectures creation of EIE digital representation are developed. The practical application of proposed methodology is illustrated by the example of an existing gas distribution station.
The MENA region, known for its significant oil and gas production, has been widely acknowledged for its reliance on fossil fuels. The dependence on fossil fuels has led to significant environmental pollution. Therefore, the shift towards a more environmentally friendly and enduring future is crucial. Thus, the current study tries to investigate the effect of green technology innovations on green growth in MENA region. Specifically, we examine whether the effect of green technology innovations on green growth depend on the threshold level of income. To this end, a panel threshold model is estimated for a sample of 10 MENA countries over the period 1998–2022. Our main findings show that only countries with income level beyond the threshold can benefit significantly from green technology innovations in term of green growth. Nevertheless, our findings indicate a substantial and adverse impact of green technology innovation on countries where income levels fall below the specified threshold.
This study explored how facilitation skills—defined as instructional techniques that accurately convey core messages in a trusting relationship and encourage self-directed learning participation among adult learners—affect the effectiveness of learning. The research focused on adult learners enrolled in lifelong education programs at seven universities, including general and vocational colleges in Busan. It aimed to examine the relationships between instructors’ facilitation skills, learner engagement, and learning outcomes, as well as the mediating effect of engagement on these relationships. A total of 213 valid survey responses were analyzed from an initial 215 responses, excluding 2 unsuitable entries. The findings are summarized as follows. First, facilitation skills were found to partially influence learner engagement. Second, learner engagement was shown to affect learning outcomes. Third, facilitation skills were found to have a partial effect on learning outcomes. Fourth, learner engagement partially mediated the relationship between facilitation skills and learning outcomes. Based on these results, this study is expected to contribute to a deeper understanding of the relationship between facilitation skills and learning outcomes in adult learners, providing practical guidelines for enhancing effectiveness in various educational contexts.
The growing interconnectedness of the world has led to a rise in cybersecurity risks. Although it is increasingly conventional to use technology to assist business transactions, exposure to these risks must be minimised to allow business owners to do transactions in a secure manner. While a wide range of studies have been undertaken regarding the effects of cyberattacks on several industries and sectors, However, very few studies have focused on the effects of cyberattacks on the educational sector, specifically higher educational institutions (HEIs) in West Africa. Consequently, this study developed a survey and distributed it to HEIs particularly universities in West Africa to examine the data architectures they employed, the cyberattacks they encountered during the COVID-19 pandemic period, and the role of data analysis in decision-making, as well as the countermeasures employed in identifying and preventing cyberattacks. A total of one thousand, one hundred and sixty-four (1164) responses were received from ninety-three (93) HEIs and analysed. According to the study’s findings, data-informed architecture was adopted by 71.8% of HEIs, data-driven architecture by 24.1%, and data-centric architecture by 4.1%, all of which were vulnerable to cyberattacks. In addition, there are further concerns around data analysis techniques, staff training gaps, and countermeasures for cyberattacks. The study’s conclusion includes suggestions for future research topics and recommendations for repelling cyberattacks in HEIs.
Copyright © by EnPress Publisher. All rights reserved.