Heat removal has become an increasingly crucial issue for microelectronic chips due to increasingly high speed and high performance. One solution is to increase the thermal conductivity of the corresponding dielectrics. However, traditional approach to adding solid heat conductive nanoparticles to polymer dielectrics led to a significant weight increase. Here we propose a dielectric polymer filled with heat conductive hollow nanoparticles to mitigate the weight gain. Our mesoscale simulation of heat conduction through this dielectric polymer composite microstructure using the phase-field spectral iterative perturbation method demonstrates the simultaneous achievement of enhanced effective thermal conductivity and the low density. It is shown that additional heat conductivity enhancement can be achieved by wrapping the hollow nanoparticles with graphene layers. The underlying mesoscale mechanism of such a microstructure design and the quantitative effect of interfacial thermal resistance will be discussed. This work is expected to stimulate future efforts to develop light-weight thermal conductive polymer nanocomposites.
Richard’s equation was approximated by finite-difference numerical scheme to model water infiltration profile in variably unsaturated soil[1]. The published data of Philip’s semi-analytical solution was used to validate the simulated results from the numerical scheme. A discrepancy was found between the simulated and the published semi-analytical results. Morris method as a global sensitivity tool was used as an alternative to local sensitivity analysis to assess the results discrepancy. Morris method with different sampling strategies were tested, of which Manhattan distance method has resulted a better sensitivity measures and also a better scan of input space than Euclidean method. Moreover, Morris method at p = 2 , r = 2 and Manhattan distance sampling strategy, with only 2 extra simulation runs than local sensitivity analysis, was able to produce reliable sensitivity measures (μ*, σ). The sensitivity analysis results were cross-validated by Sobol’ variance-based method with 150,000 simulation runs. The global sensitivity tool has identified three important parameters, of which spatial discretization size was the sole reason of the discrepancy observed. In addition, a high proportion of total output variance contributed by parameters β and θs is suggesting a greater significant digits to reduce its input uncertainty range.
Cross-border infrastructure projects offer significant economic and social benefits for the Asia-Pacific region. If the required investment of $8 trillion in pan-Asian connectivity was made in the region’s infrastructure during 2010–2020, the total net income gains for developing Asia could reach about $12.98 trillion (in 2008 US dollars) during 2010–2020 and beyond, of which more than $4.43 trillion would be gained during 2010–2020 and nearly $8.55 trillion after 2020. Indeed, infrastructure connectivity helps improve regional productivity and competitiveness by facilitating the movement of goods, services and human resources, producing economies of scale, promoting trade and foreign direct investments, creating new business opportunities, stimulating inclusive industrialization and narrowing development gaps between communities, countries or sub-regions. Unfortunately, due to limited financing, progress in the development of cross-border infrastructure in the region is low.
This paper examines the key challenges faced in financing cross-border projects and discusses the roles that different stakeholders—national governments, state-owned enterprises, private sector, regional entities, development financing institutions (DFIs), affected people and civil society organizations—can play in facilitating the development of cross-border infrastructure in the region. In particular, this paper highlights the major risks that deter private sector investments and FDIs and provides recommendations to address these risks.
Space is a product of society. Driven by industrialization, urbanization, informatization and government policies, China’s rural space is undergoing drastic reconstruction. As one of the core contents of international rural geography research, rural space research are multi-disciplinary, multi perspective, multi-dimensional and multi-method, forming a rich research field. In order to comprehensively grasp the progress of rural space research abroad, this study reviewed international rural space research literature in recent 40 years. The study found that foreign scholars described the connotation of rural space from the aspects of material, imagination and practice, emphasize the importance of daily life practice. It introduced living space to construct a more systematic research framework of rural space by establishing a “three-fold model of rural space”. With regard to the theoretical perspective, international research on rural space has experienced three stages: functionalism, political economics and social constructivism. In the evolution of time, it has realized the transformation from productivism to post-productivism; in the spatial dimension, it realizes the multiple superposition of settlement space, economic space, social space and cultural space. As a whole, international research on rural space has realized the transformation from material level to social representation, from objective space to subjective space, and from static one-dimensional space to dynamic multi-dimensional space, which enlightens us on the importance of interdisciplinary research and “social cultural” research on rural space. The construction of rural space in China needs to pay attention to the subject status of farmers and multifunction of rural space, respect the role of locality and difference of various places, and recover the function of production of meaning of rural space.
Copyright © by EnPress Publisher. All rights reserved.