In this paper, all the forests, woodlands and trees in the administrative area of Zhaoling Township in Chuzhou City of Huai'an City were collected and analyzed. The total area of the administrative area is 4852 hectares, the forest coverage rate is 22.07%, and the forest greening rate is 26.13%. This index has exceeded 20% of the forest coverage rate of the well - off society. Tree species is particularly serious. In the forest system (pure forest), the area of pure forest of poplar is accounted for 99.9% of the whole forest area. In the four tree systems, the number of poplar trees accounted for 80% of the total number of trees in the whole tree, and the total amount of poplar trees accounted for 98%. The poplar pure forest age group structure disorders, the unit area is low. The ratio of total area of poplar pure forest in Zhongling and young forests was 92.9%, and the ratio of total area of poplar pure forest and mature forest was 7.1%. The ratio of mature forest and the ratio of mature forest was 0.7%, and the proportion of each group was obviously abnormal.
Objective: To investigate the value of differential diagnosis of hepatocellular carcinoma (HCC) and cirrhotic nodules via radiomics models based on magnetic resonance images. Background: This study is to distinguish hepatocellular carcinoma and cirrhotic nodules using MR-radiomics features extracted from four different phases of MRI images, concluded T1WI, T2WI, T2 SPIR and delay phase of contrast MRI. Methods: In this study, the four kind of magnetic resonance images of 23 patients with hepatocellular carcinoma (HCC) were collected. Among them, 12 patients with liver cirrhosis were used to obtain cirrhotic nodules (CN). The dataset was used to extract MR-radiomics features from regions of interest (ROI). The statistical methods of MRradiomics features could distinguish HCC and CN. And the ability of radiomics features between HCC and CN was estimated by receiver operating characteristic curve (ROC). Results: A total of 424 radiomics features were extracted from four kind of magnetic resonance images. 86 features in delay phase of contrast MRI,86 features in spir phase of T2WI,86 features in T1WI and 88 features in T2WI showed statistical difference (p < 0.05). Among them, the area under the curves (AUC) of these features larger than 0.85 were 58 features in delay phase of contrast MRI, 54 features in spir phase of T2WI, 62 features in T1WI and 57 features in T2WI. Conclusions: Radiomics features extracted from MRI images have the potential to distinguish HCC and CN.
Eco-friendly and greener barrier materials are required to replace the synthetic packaging materials as they produce a threat to environment. These can be fabricated by natural polymers such as cellulose nanofiber (CNF). The sustainability of CNF was so amazing due to its potential for circular economy and provides alternative platform for synthetic plastics. The challenging task to fabricate CNF films still existed and also current methods have various limitations. CNF films have good oxygen permeability and the value was lower than synthetic plastics. However, CNF films have poor water vapour permeability and higher than that of synthetic plastics. The fabrication method is one of strong parameters to impact on the water permeability of CNF films. The deposition of CNF suspension on the stainless-steel plate via spraying, is a potential process for fabrication for CNF films acting as barrier material against water vapour. In spraying process, the time required to form CNF films in diameter of 15.9 cm was less than 1 min and it is independent of CNF content in the suspension. The uniqueness of CNF films via the spraying process was their surfaces, such as rough surface exposed to air and smooth surface exposed to stainless steel. Their surfaces were investigated by SEM, AFM and optical profilometry micrographs, confirming that the smooth surface was evaluated notable lower surface roughness. The spray coated surface was smooth and glossy and its impact on the water vapor permeability remains obscure. The spraying process is a flexible process to tailor the basis weight and thickness of CNF films can be adjusted by the spraying of CNF suspension with varying fibre content. The water vapour permeability of CNF films can be tailored via varying density of CNF films. The plot between water vapour transfer rate (WVTR)/water vapour and density of CNF films has been investigated. The WVP of spray coated CNF films varied from 6.99 ± 1.17 × 10−11 to 4.19 ± 1.45 × 10−11 g/m.s.Pa. with the density from 664 Kg/m3 to 1,412.08 Kg/m3. The WVP of CNF films achieved with 2 wt% CNF films (1,120 Kg/m3) was 3.91 × 10−11 g/m.s.Pa. These values were comparable with the WVP of synthetic plastics. Given this correspondence, CNF films via spraying have a good barrier against water vapour. This process is a potential for scale up and commercialization of CNF films as barrier materials.
Due to rising global environmental challenges, air/water pollution treatment technologies, especially membrane techniques, have been focused on. In this context, air or purification membranes have been considered effective for environmental remediation. In the field of polymeric membranes, high-performance polymer/graphene nanocomposite membranes have gained increasing research attention. The polymer/graphene nanomaterials exposed several potential benefits when processed as membranes. This review explains the utilization of polymer and graphene-derived nanocomposites towards membrane formation and water or gas separation or decontamination properties. Here, different membrane designs have been developed depending upon the polymer types (poly(vinyl alcohol), poly(vinyl chloride), poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), etc.) and graphene functionalities. Including graphene in polymers influences membrane microstructure, physical features, molecular permeability or selectivity, and separations. Polysulfone/graphene oxide nanocomposite membranes have been found to be most efficient with an enhanced rejection rate of 90%–95%, a high water flux >180 L/m2/h, and a desirable water contact angle for water purification purposes. For gas separation membranes, efficient membranes have been reported as polysulfone/graphene oxide and poly(dimethyl siloxane)/graphene oxide nanocomposites. In these membranes, N2, CO2, and other gases permeability has been found to be higher than even >99.9%. Similarly, higher selectivity values for gases like CO2/CH4 have been observed. Thus, high-performance graphene-based nanocomposite membranes possess high potential to overcome the challenges related to water or gas molecular separations.
Urban public spaces are the interface of any city that could tell about the city’s dynamic and status quo. In addition, Urban public spaces play a pivotal role in shaping societies’ dynamics and can significantly affect conflict and peacebuilding initiatives. In a context marked by Conflict’s profound impact, this article aims to contribute to the knowledge base for informed urban interventions that foster positive interactions and reconciliation in post-conflict cities. The article seeks to explore the intricate relationship between urban spaces and their influence on war or to promote sustainable peacebuilding through investigating the various roles of the urban public spaces during the war and peacetimes via residents’ experiences of the diverse spaces’ functions that shaped the city’s status quo. In addition, considering the interplay of social dynamics, conflict history, and the mental spatial map of cities in public urban spaces can influence lasting peace or upcoming conflicts. This article focuses on Aleppo as a case study, understanding the positive and negative experiences from the residents’ perspective before and during the current war in Syria, and even distinguishes between two periods during the recent war, which are the active violence and after the end of the direct active violence, where it could inform the decision-makers and urban planners on the areas of focus while developing post-war urban public spaces to ensure its positive role in fostering peace and be able to deal with the social dynamic and the mental spatial map that developed along with the conflict history. The paper utilised a mixed-methods approach, encompassing a case study review of Aleppo City from an urban perspective and fieldwork involving focus group discussions and semi-structured interviews with Aleppian from different backgrounds and geographic areas that represent the social dynamic of the city, as well as approached Aleppian who are still in living in the city and those who flee out of it to ensure the coverage of different political direction in addition field work engaged with academia and technical from the city who shared their knowledge and experiences working in the city. Participants were prompted to reflect on their pre-war familiarity with public places and share their experiences. These experiences were categorized by enabling a comprehensive understanding of how conflict context influenced these spaces. The article results offer an understanding of the peace-guiding functions of the urban public spaces based on the city residents’ experiences that could inform architects and urban planners in designing spaces conducive to sustainable peacebuilding. The article’s findings underscore the importance of strategically designed urban public spaces in promoting peace and social cohesion.
Copyright © by EnPress Publisher. All rights reserved.