Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6): 394–424. doi:10.3322/caac.21492
McGlynn KA, London WT. Epidemiol-ogy and natural history of hepatocellu-lar car cinoma. Best Pract Res Clin Gas-troenterol. 2005;19(1): 3–23.
Theise ND, Curado MP, Franceschi S, et al. Hepatocellular carcinoma. In: Bosman FT, Carneiro F, Hruban RH, Theise ND. (editors). WHO Cassification of Tumours of the Di gestive System. IARC Publishing; 2010. pp. 205–216.
Choi JY, Lee JM, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Devel-opment, growth, and spread: Key path-ologic and imaging aspects. Radiology. 2014; 272(3): 635–654.
Ronot M, Purcell Y, Vilgrain V. Hepato-cellular Carcinoma: Current Imaging Modalities for Diagnosis and Prognosis. Dig Dis Sci. 2019; 64(4): 934–950. doi:10.1007/s10620-019-05547-0
Forner A, Vilana R, Ayuso C, et al. Diag nosis of hepatic nodules 20 mm or smaller in cirrhosis: Prospective valida-tion of the noninvasive diagnostic cri-teria for hepato cellular carcinoma. Hepatology 2008; 47(1): 97–104.
Huang JY, Li JW, Lu Q, et al. Diagnostic Accuracy of CEUS LI-RADS for the Characterization of Liver Nodules 20 mm or Smaller in Patients at Risk for Hepatocellular Carcinoma. Radiology. 2020; 294(2): 329–339.
Chen X, Yang Z, Deng J. Use of 64-Slice Spiral CT Examinations for Hepatocel-lular Carcinoma (DR LU). J BUON. 2019; 24(4): 1435–1440
Di Martino M, De Filippis G, De Santis A, et al. Hepatocellular carcinoma in cir-rhotic patients: prospective comparison of US, CT and MR imaging. Eur Radiol. 2013; 23(4): 887–896. doi:10.1007/s00330-012-2691-z
Sun XJ, Quan XY, Huang FH, Xu YK. Quantitative evaluation of diffusion-weighted magnetic resonance imaging of focal hepatic lesions. World J Gastro-enterol. 2005; 11(41): 6535–6537. doi:10.3748/wjg.v11.i41.6535
International Working Party. Terminol-ogy of nodular hepatocellular lesions. Hepatol ogy. 1995; 22(3): 983–993.
Park YN, Kim MJ. Hepatocarcinogenesis: imaging-pathologic correlation. Ab-dom Im aging 2011; 36(3): 232–243.
Aihara T, Noguchi S, Sasaki Y, Nakano H, Imaoka S. Clonal analysis of regen-erative nodules in hepatitis C virus-in-duced liver cirrhosis. Gastroenterology. 1994; 107(6): 1805– 1811.
Trevisani F, Cantarini MC, Wands JR, Bernardi M. Recent advances in the nat ural history of hepatocellular carcinoma. Carcinogenesis. 2008; 29(7): 1299–1305.
Brody RI, Theise ND. An inflammatory proposal for hepatocarcinogenesis. Hepa tology 2012; 56(1): 382–384.
Thorgeirsson SS, Grisham JW. Molecu-lar pathogenesis of human hepatocel-lular car cinoma. Nat Genet, 2002; 31(4): 339–346.
Theise ND. Macroregenerative (dys-plastic) nodules and hepatocarcino-genesis: theo retical and clinical consid-erations. Semin Liver Dis .1995;1 5(4): 360–371.
Aravalli RN, Cressman EN, Steer CJ. Cel lular and molecular mechanisms of hepato cellular carcinoma: An update. Arch Toxicol. 2013; 87(2): 227–247.
Sun M, Eshleman JR, Ferrell LD, et al. An early lesion in hepatic carcinogenesis: loss of heterozygosity in human cir-rhotic livers and dysplastic nodules at the 1p36-p34 region. Hepatology .2001; 33(6): 1415–1424.
Park YN. Update on precursor and early lesions of hepatocellular carcinomas. Arch Pathol Lab Med. 2011; 135(6): 704–715.
Roskams T, Kojiro M. Pathology of early hepatocellular carcinoma: conventional and molecular diagnosis. Semin Liver Dis 2010; 30(1): 17–25.
Stevens WR, Gulino SP, Batts KP, et al. Mosaic pattern of hepatocellular carcinoma: histologic basis for a characteristic CT appearance. J Com put Assist Tomogr. 1996; 20(3): 337–342.
Lambin P, Rios-Velazquezet E, Leijenaaral R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. European Journal of Cancer. 2012; 48: 441–446.
Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges. Magn. Reson. Im-aging. 2012; 30, 1234–1248.
Haase AT, Henry K, Zupancic M, et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. Science. 1996; 274, 985–989.
Schoolman H, Bernstein L. Com-puter use in diagnosis, prognosis, and therapy. Science. 1978; 200: 926–931.
Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in lung cancer. Strahlenther Onkol. 2020; 196(10): 879–887. doi:10.1007/s00066-020-01625-9
Jiang Y, Chen C, Xie J, et al. Radiomics signature of computed tomography imaging for prediction of survival and chemotherapeutic benefits in gastric cancer. EBioMedicine. 2018; 36: 171–182. doi:10.1016/j.ebiom.2018.09.007
Smith CP, Czarniecki M, Mehralivand S, et al. Radiomics and radiogenomics of prostate cancer. Abdom Radiol (NY). 2019; 44(6): 2021–2029. doi:10.1007/s00261-018-1660-7
Tsai A, Buch K, Fujita A, et al. Using CT texture analysis to differentiate between naso-pharyngeal carcinoma and age-matched adenoid controls. Eur J Radiol. 2018; 108: 208–14.
Thawani R, McLane M, Beig N, et al. Radiomics and radiogenomics in lung cancer: A review for the clinician. Lung Cancer. 2018; 115: 34–41. doi:10.1016/j.lungcan.2017.10.015
Wei K, Su H, Zhou G,et al. Potential application of radiomics for differentiating solitary pul-monary nodules,OMICS J Ra-diol. 2016; 5(2): 1000218