The human brain has been described as a complex system. Its study by means of neurophysiological signals has revealed the presence of linear and nonlinear interactions. In this context, entropy metrics have been used to uncover brain behavior in the presence and absence of neurological disturbances. Entropy mapping is of great interest for the study of progressive neurodegenerative diseases such as Alzheimer’s disease. The aim of this study was to characterize the dynamics of brain oscillations in such disease by means of entropy and amplitude of low frequency oscillations from Bold signals of the default network and the executive control network in Alzheimer’s patients and healthy individuals, using a database extracted from the Open Access Imaging Studies series. The results revealed higher discriminative power of entropy by permutations compared to low-frequency fluctuation amplitude and fractional amplitude of low-frequency fluctuations. Increased entropy by permutations was obtained in regions of the default network and the executive control network in patients. The posterior cingulate cortex and the precuneus showed differential characteristics when assessing entropy by permutations in both groups. There were no findings when correlating metrics with clinical scales. The results demonstrated that entropy by permutations allows characterizing brain function in Alzheimer’s patients, and also reveals information about nonlinear interactions complementary to the characteristics obtained by calculating the amplitude of low frequency oscillations.
Banana (Musa spp.) productivity is limited by sodic soils, which impairs root growth and nutrient uptake. Analyzing root traits under stress conditions can aid in identifying tolerant genotypes. This study investigates the root morphological traits of banana cultivars under sodic soil stress conditions using Rhizovision software. The pot culture experiment was laid out in a Completely Randomized Design (CRD) under open field conditions, with treatments comprising the following varieties: Poovan (AAB), Udhayam (ABB), Karpooravalli (ABB), CO 3 (ABB), Kaveri Saba (ABB), Kaveri Kalki (ABB), Kaveri Haritha (ABB), Monthan (ABB), Nendran (AAB), and Rasthali (AAB), each replicated thrice. Parameters such as the number of roots, root tips, diameter, surface area, perimeter, and volume were assessed to evaluate the performance of different cultivars. The findings reveal that Karpooravali and Udhayam cultivars exhibited superior performance in terms of root morphology compared to other cultivars under sodic soil stress. These cultivars displayed increased root proliferation, elongation, and surface area, indicating their resilience to sodic soil stress. The utilization of Rhizovision software facilitated precise measurement and analysis of root traits, providing valuable insights into the adaptation mechanisms of banana cultivars to adverse soil conditions.
Eucalyptus is an important source of cellulose and a widely cultivated plant. Biotechnology tools can save time spent in breeding and transcriptomic approaches generate a gene profile that allows the identification of candidates involved in processes of interest. RNA-seq is a commonly used technology for transcript analysis and it provides an overview of regulatory pathways. Here, we selected two contrasting Eucalyptus species for cold acclimatization and focused in responsive genes under cold condition aiming woody properties – lignin and cellulose. The number of differentially expressed genes identified in stem sections were 3.300 in Eucalyptus globulus and 1370 in Eucalyptus urograndis. We listed genes with expression higher than 10 times including NAC, MYB and DUF family members. The GO analysis indicates increased oxidative process for E. urograndis. This data can provide information for more detailed analyses for breeding, especially in perennial plants.
This study explores the critical role of the retail sector in the global economy and the importance of working capital management within retail businesses. Recognizing retail’s influence beyond just income generation, the research examines its impact on economic stability, job creation, and national GDP, and how it links industries such as manufacturing and logistics. Employing a blended-methods approach, the study integrates quantitative analysis using AMOS software with qualitative insights from interviews with financial managers and retail experts. Key focus areas include cash flow management, market demand, and supplier relationship management in the context of working capital management. Findings highlight the necessity of effective working capital management in maintaining financial stability, optimizing shareholder wealth, and ensuring long-term business viability in the retail sector. Strategies for enhancing profitability, such as improving supplier relationships and adapting to market demands, are identified. This research contributes to understanding the economic impact of the retail sector and the intricacies of working capital management. It offers insights for policymakers, retail managers, and academics, emphasizing the need for supportive retail industry measures and effective financial management practices. The study fills a gap in literature and sets a foundation for future research in this critical area of economic studies and retail management.
Breast cancer was a prevalent form of cancer worldwide. Thermography, a method for diagnosing breast cancer, involves recording the thermal patterns of the breast. This article explores the use of a convolutional neural network (CNN) algorithm to extract features from a dataset of thermographic images. Initially, the CNN network was used to extract a feature vector from the images. Subsequently, machine learning techniques can be used for image classification. This study utilizes four classification methods, namely Fully connected neural network (FCnet), support vector machine (SVM), classification linear model (CLINEAR), and KNN, to classify breast cancer from thermographic images. The accuracy rates achieved by the FCnet, SVM, CLINEAR, and k-nearest neighbors (KNN) algorithms were 94.2%, 95.0%, 95.0%, and 94.1%, respectively. Furthermore, the reliability parameters for these classifiers were computed as 92.1%, 97.5%, 96.5%, and 91.2%, while their respective sensitivities were calculated as 95.5%, 94.1%, 90.4%, and 93.2%. These findings can assist experts in developing an expert system for breast cancer diagnosis.
Graphene and derivatives have been frequently used to form advanced nanocomposites. A very significant utilization of polymer/graphene nanocomposite was found in the membrane sector. The up-to-date overview essentially highlights the design, features, and advanced functions of graphene nanocomposite membranes towards gas separations. In this concern, pristine thin layer graphene as well as graphene nanocomposites with poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), polyimide, and other matrices have been perceived as gas separation membranes. In these membranes, the graphene dispersion and interaction with polymers through applying the appropriate processing techniques have led to optimum porosity, pore sizes, and pore distribution, i.e., suitable for selective separation of gaseous molecules. Consequently, the graphene-derived nanocomposites brought about numerous revolutions in high-performance gas separation membranes. The structural diversity of polymer/graphene nanocomposites has facilitated the membrane selective separation, permeation, and barrier processes, especially in the separation of desired gaseous molecules, ions, and contaminants. Future research on the innovative nanoporous graphene-based membrane can overcome design/performance-related challenging factors for technical utilizations.
Copyright © by EnPress Publisher. All rights reserved.