This study investigates the public’s perceptions of digital innovations in pharmacy, with a focus on health informatics and medication management. Despite the rapid development of these technologies, a comprehensive understanding of how various demographics perceive and interact with them is lacking hence, this research aims to bridge this gap by offering insights into public attitudes and the factors influencing the adoption of digital tools in pharmacy practice, as KSA population and healthcare professionals after Covid-19 has observed the significant potential of digital health. A cross-sectional survey involving 1132 participants was conducted, employing SPSS for data analysis to ensure precise and reliable results. The findings indicate general optimism about the potential of digital innovations to enhance healthcare outcomes but concerns about data privacy and usability significantly affect user acceptance. The researchers recommended tailored educational programs and user-centered design to facilitate the adoption of digital pharmacy innovations. Key contributions include the identification of ‘Ease of Use’ and ‘Data Security and Privacy’ as predominant factors in the adoption of digital health tools.
Human resources are considered an important resource for companies today because the knowledge that a person has can be used to become an organisation’s competitive advantage. In addition, digital marketing has an important role in determining the performance of business entities because we have now entered the digital era, which certainly cannot be separated from the influence of technology on marketing through social media. Therefore, this study aims to examine the effect of Strategic Human Resource Management (SHRM) in digital marketing on business entity performance, which is determined by digital marketing in a business entity. The data in this research was collected by distributing questionnaires to 455 Micro Small Medium Enterprises (MSMEs) in Indonesia. Data analysis used the Moderated Regression Analysis (MRA) method. The research results show that strategic human resource management variables influence business performance, and the support of digital marketing capabilities and activities strengthens this influence. Based on the results of this research, existing business entities must strengthen organizational performance by strengthening human resources in basic soft skills and hard skills and skills in digital marketing and improving marketing activities using digitalization.
This study applies machine learning methods such as Decision Tree (CART) and Random Forest to classify drought intensity based on meteorological data. The goal of the study was to evaluate the effectiveness of these methods for drought classification and their use in water resource management and agriculture. The methodology involved using two machine learning models that analyzed temperature and humidity indicators, as well as wind speed indicators. The models were trained and tested on real meteorological data to assess their accuracy and identify key factors affecting predictions. Results showed that the Random Forest model achieved the highest accuracy of 94.4% when analyzing temperature and humidity indicators, while the Decision Tree (CART) achieved an accuracy of 93.2%. When analyzing wind speed indicators, the models’ accuracies were 91.3% and 93.0%, respectively. Feature importance revealed that atmospheric pressure, temperature at 2 m, and wind speed are key factors influencing drought intensity. One of the study’s limitations was the insufficient amount of data for high drought levels (classes 4 and 5), indicating the need for further data collection. The innovation of this study lies in the integration of various meteorological parameters to build drought classification models, achieving high prediction accuracy. Unlike previous studies, our approach demonstrates that using a wide range of meteorological data can significantly improve drought classification accuracy. Significant findings include the necessity to expand the dataset and integrate additional climatic parameters to improve models and enhance their reliability.
The study’s objectives are to investigate the relationships between earnings management, government ownership, and corporate performance in the Gulf Cooperation Council (GCC) region during the period 2017–2021, utilizing a dataset comprising 188 companies. It further explores the moderating role of government ownership in the association between earnings management and company performance. The study used the panel regression data analysis to investigate the relationship between the variables under the study. Employing linear regression and moderated linear regression, the research discerns notable patterns. The result shows a positive effect emerges between government ownership and corporate performance. Conversely, the result shows a negative association is observed between earnings management and corporate performance. Finally, the moderating role of government ownership in GCC countries is a good governance mechanism to mitigate the agency problem.
This study aims to identify and the implementation of ASN Management policies on career development aspects based on the merit system in the West Java Provincial Government and 6 Regency/City Governments in West Java Province. The failure of the institutionalization of the meritocratic system in ASN career development is partly triggered by the symptoms of the appointment or selection of officials in the central and regional levels not based on their professionalism or competence except for subjective considerations, political ties, close relationships and even bribery. This study uses a qualitative method with a descriptive approach. The operationalization concept in this study uses Merilee S. Grindle's Policy Implementation theory which consists of dimensions of policy content and its implementation context. The factors that cause the implementation of the policy to be less than optimal include: 1. Uneven understanding of meritocracy; 2. Slowness/unpreparedness in synchronizing central and regional rules/policies; 3. The information integration system between the center and regions has not yet been implemented; 4. Limited supporting infrastructure; 5. Limited permits for related officials; 6. Transparency; 7. Collaboration across units/agencies; 8. External intervention; 9. Use of information systems/technology. To optimize these factors, an Accelerator of Governmental Unit's Success (AGUS) model was created, which is a development of the Grindle policy implementation model with the novelty of adding things that influence implementation, including top leader's commitment and wisdom, effectiveness of talent placement, on-point human development, technology savvy, cross-unit/agency collaboration, and monitoring and evaluation processes.
Copyright © by EnPress Publisher. All rights reserved.