This exploratory study aims to identify the main characteristics and relationships between artificial intelligence (AI) and broadband development in Asia and the Pacific. Broadband networks are the foundation and prerequisite for the development of AI. But what types of broadband networks would be conducive are not adequately discussed so far. Furthermore, in addition to broadband networks, other factors, such as income level, broadband quality, and investment, are expected to influence the uptake of AI in the region. The findings are synthesized into a set of policy recommendations at the end of the article, which highlights the need for regional cooperation through an initiative, such as the Asia-Pacific Information Superhighway (AP-IS).
This study examines conditions that impact PPP delivery success or failure in the roadways sector in India using Qualitative Comparative Analysis. QCA is well-suited for problems where multiple factors combine to create pathways leading to an outcome. Past investigations have compared PPP and non-PPP project delivery performance, but this study examines performance within PPPs by uncovering a set of conditions that combine to influence the success or failure road PPP project delivery in India. Based on data from 21 cases, pathways explaining project delivery success or failure were identified. Specifically, PPPs with high concessionaire equity investment and low regional industrial activity led to project delivery success. Projects with lower concessionaire equity investment and low reliance on toll revenue and with either: (a) high project technical complexity or (b) high regional industrial activity, led to project delivery failure. The pathways identified did not have coverage values that they were extremely strong. Coverage strength was hindered by lack of access to information on additional conditions that could be configurationally important. Further, certain characteristics of the Indian market limit generalization. Identification of combinations of conditions leading to PPP project delivery success or failure improves knowledge of the impacts of structure and characteristics of these complex arrangements. This study is one of the first to use fuzzy QCA to understand project delivery success/failure in road PPP projects. Moreover, this study takes into account factors specific to a sector and delivery mode to explain project delivery performance.
Sweet cherry is a type of fruit that is high on demand in exports for table consumption. Turkey is a gene centre for sweet cherry fruit. Fruits are produced over an extended period because of the ecological richness and large cultivation area, which allows Turkey to remain as the leader of sweet cherry production in the world. The variety, ‘0900 Ziraat’, also known as the Turkish sweet cherry fruit, has the highest production volume. Mazzard and Mahaleb are the commonly used rootstocks for sweet cherry cultivation; and Mazzard is used more frequently than Mahaleb. Clonal rootstocks are used to maintain cultivation in new orchards. The present study provides a detailed information on the current status of sweet cherry fruit cultivation in Turkey as well as its cultivation practices and exports. It is targeted that modern irrigation techniques, good agricultural practices, and increased cultivation areas are established to maintain Turkey’s position as the leader in global sweet cherry production and exports.
Polymers obtained from renewable sources are gaining popularity over their petroleum based counter parts in recent years due to their capability to address the environmental pollution related concerns emanating from the widespread usage of synthetic polymers. Even though the polymers from renewable sources are attractive in an environmental point of view, some of the property limitations and the high cost of these materials pose limitations for their extensive commercial applications. These aspects opened the door for a large chunk of research activities in development of polyblends and composites containing polymers from renewable sources as one of the components. Poly (lactic acid) (PLA) is one of the most discussed and commercialized polymer originated from renewable resources. Even though it has many useful properties, certain disadvantages like high brittleness, low impact resistance etc. limit the wide spread commercialization of PLA. In this review article, the recent research activities which are aimed to fill this gap by various modifications of PLA are discussed with special emphasis on the latest research advancements in the field of biodegradable and non biodegradable systems containing PLA.
To investigate the possible role of arbuscular mycrrhizal fungi (AMF) in alleviating the negative effects of salinity on Stevia rebaudiana (Bert.), the regenerated plantlets in tissue culture was transferred to pots in greenhouse and inoculated with Glomus intraradices. Salinity caused a significant decrease in chlorophyll content, photosynthesis efficiency and enhanced the electrolyte leakage. The use of AMF in salt –affected plants resulted in improved all above mentioned characteristics. Hydrogen peroxide and malondialdehyde (MDA) contents increased in salt stressed plants while a reduction was observed due to AMF inoculation. CAT activity showed a significant increase up to 2 g/l and then followed by decline at 5 g/l NaCl in both AMF and non-AMF treated stevia, however, AMF inoculated plants maintained lower CAT activity at all salinity levels (2 and 5 g/l). Enhanced POX activities in salt- treated stevia plants were decreased by inoculation of plants with AMF. The addition of NaCl to stevia plants also resulted in an enhanced activity of SOD whilst, AMF plants maintained higher SOD activity at all salinity levels than those of non-AMF inoculated plants. AMF inoculation was capable of alleviating the damage caused by salinity on stevia plants by reducing oxidative stress and improving photosynthesis efficiency.
The size effect on the free vibration and bending of a curved FG micro/nanobeam is studied in this paper. Using the Hamilton principle the differential equations and boundary conditions is derived for a nonlocal Euler-Bernoulli curved micro/nanobeam. The material properties vary through radius direction. Using the Navier approach an analytical solution for simply supported boundary conditions is obtained where the power index law of FGM, the curved micro/nanobeam opening angle, the effect of aspect ratio and nonlocal parameter on natural frequencies and the radial and tangential displacements were analyzed. It is concluded that increasing the curved micro/nanobeam opening angle results in decreasing and increasing the frequencies and displacements, respectively. To validate the natural frequencies of curved nanobeam, when the radius of it approaches to infinity, is compared with a straight FG nanobeam and showed a good agreement.
Copyright © by EnPress Publisher. All rights reserved.