This paper aims to verify the possibility of utilising water-in-diesel emulsions (WiDE) as an alternative drop-in fuel for diesel engines. An 8% WiDE was produced to be tested in a four-stroke, indirect injection (IDI) diesel engine and compared to EN590 diesel fuel. An eddy current brake and an exhaust gas analyser were utilised to measure different engine parameters such as torque, fuel consumption, and emissions at different engine loads. The results show that the engine running on emulsified fuel leads to a reduction in torque and power, an increase in the specific fuel consumption, and slightly better thermal efficiency. The highest percentual increment of thermal efficiency for WiDE is obtained at 100% engine load, 5.68% higher compared to diesel. The emissions of nitric oxide (NO) and carbon dioxide (CO2) are reduced, but carbon monoxide (CO) and hydrocarbons (HC) emissions are increased, compared to traditional diesel fuel. The most substantial decrease in NO and CO2 levels was achieved at 75% engine load with 33.86% and 25.08% respectively, compared to diesel.
Hospital waste containing antibiotics is toxic to the ecosystem. Ciprofloxacin is one of the essential, widely used antibiotics and is often detected in water bodies and soil. It is vital to treat these medical wastes, which urge new research towards waste management practices in hospital environments themselves. Ultimately minimizes its impact in the ecosystem and prevents the spread of antibiotic resistance. The present study highlights the decomposition of ciprofloxacin using nano-catalytic ZnO materials by reactive oxygen species (ROS) process. The most effective process to treat the residual antibiotics by the photocatalytic degradation mechanism is explored in this paper. The traditional co-precipitation method was used to prepare zinc oxide nanomaterials. The characterization methods, X-Ray diffraction analysis (XRD), Fourier Transform infrared spectroscopy (FTIR), Ulraviolet-Visible spectroscopy (UV-Vis), Scanning Electron microscopy (SEM) and X-Ray photoelectron spectroscopy (XPS) have done to improve the photocatalytic activity of ZnO materials. The mitigation of ciprofloxacin catalyzed by ZnO nano-photocatalyst was described by pseudo-first-order kinetics and chemical oxygen demand (COD) analysis. In addition, ZnO materials help to prevent bacterial species, S. aureus and E. coli, growth in the environment. This work provides some new insights towards ciprofloxacin degradation in efficient ways.
Proper understanding of LULC changes is considered an indispensable element for modeling. It is also central for planning and management activities as well as understanding the earth as a system. This study examined LULC changes in the region of the proposed Pwalugu hydropower project using remote sensing (RS) and geographic information systems (GIS) techniques. Data from the United States Geological Survey's Landsat satellite, specifically the Landsat Thematic Mapper (TM), the Enhanced Thematic Mapper (ETM), and the Operational Land Imager (OLI), were used. The Landsat 5 thematic mapper (TM) sensor data was processed for the year 1990; the Landsat 7 SLC data was processed for the year 2000; and the 2020 data was collected from Operation Land Image (OLI). Landsat images were extracted based on the years 1990, 2000, and 2020, which were used to develop three land cover maps. The region of the proposed Pwalugu hydropower project was divided into the following five primary LULC classes: settlements and barren lands; croplands; water bodies; grassland; and other areas. Within the three periods (1990–2000, 2000–2020, and 1990–2020), grassland has increased from 9%, 20%, and 40%, respectively. On the other hand, the change in the remaining four (4) classes varied. The findings suggest that population growth, changes in climate, and deforestation during this thirty-year period have been responsible for the variations in the LULC classes. The variations in the LULC changes could have a significant influence on the hydrological processes in the form of evapotranspiration, interception, and infiltration. This study will therefore assist in establishing patterns and will enable Ghana's resource managers to forecast realistic change scenarios that would be helpful for the management of the proposed Pwalugu hydropower project.
This study aims to investigate the relationship between internal and information integration within the supply chain (SCI-INTI and SCI-INFI), supply chain management (SCM) practices, and port operational performance (POP) in Oman’s container ports. Additionally, it explores the mediating role of SCM practices in the relationship between SCI-INTI, SCI-INFI, and POP in Oman. To meet the study’s objectives, a quantitative cross-sectional survey method was used. A total of 377 questionnaires were distributed to managers responsible for supply chain operations in the main departments at Sohar and Salalah ports, yielding 331 usable responses, with a response rate of 88 percent. The data collected were analyzed using partial least squares structural equation modeling (PLS-SEM). The results show that both internal and information integration within the supply chain have positive and statistically significant effects on the operational performance of Oman’s container ports (POP). Specifically, Supply Chain Integration with Internal Integration (SCI-INTI) significantly impacts POP (β = 0.249, t = 5.039, p < 0.001), and Supply Chain Integration with Information Integration (SCI-INFI) also significantly affects POP (β = 0.259, t = 4.966, p < 0.001). Additionally, SCI-INTI positively influences Supply Chain Management Practices (SCMP) (β = 0.381, t = 7.674, p < 0.001), as does SCI-INFI (β = 0.484, t = 9.878, p < 0.001). Furthermore, SCMP positively and significantly influences the operational performance of Oman’s container ports (β = 0.424, t = 7.643, p < 0.001). These findings contribute to the literature by emphasizing the significance of internal and information integration within the supply chain and SCM practices as strategic internal resources and capabilities that enhance operational performance in container ports. Understanding these elements enables decision-makers and policymakers within government port authorities and port operating companies to optimize internal resources and capabilities to improve port operational performance.
The construction industry is a significant contributor towards global environmental degradation and resource depletion, with developing economies facing unique challenges in adopting sustainable construction practices. This systematic review aims to investigate the gap in sustainable construction implementation among global counterparts. The study utilizes the P5 (People, Planet, Prosperity, Process, Products) Standard as a framework for evaluating sustainable construction project management based on environmental, social, and economic targets. A Systematic Literature Review from a pool of 994 Sustainable Construction Project Management (SCPM) papers is conducted utilizing the PRISMA methodology. Through rigorous Identification, Screening, and Eligibility Verification, an analysis is synthesized from 44 relevant literature discussing SCPM Implementations worldwide. The results highlight significant challenges in three main categories: environmental, social, and economic impacts. Social impacts are found as the most extensively researched, while environmental and economic impacts are less studied. Further analysis reveals that social impacts are a major concern in sustainable construction, with numerous studies addressing labor practices and societal well-being. However, there is a notable gap in research on human rights within the construction industry. Environmental impacts, such as resource utilization, energy consumption, and pollution, are less frequently addressed, indicating a need for more focused studies in these areas. Economic impacts, including local economic impact and business agility, are further substantially underrepresented in the literature, suggesting that economic viability is a critical yet underexplored aspect of sustainable construction. The findings underscore the need for further research in these areas to address the implementation challenges of sustainable project management effectively. This research contributes towards the overall research of global sustainable construction through the utilization of the P5 Standards as a new lens of determining sustainability performance for construction projects worldwide.
Copyright © by EnPress Publisher. All rights reserved.