This article focuses on studying how transportation connectivity affects Vietnam’s trade with Association of Southeast Asian Nations (ASEAN) countries. By using a gravity model, the article applies fixed effects (FE) and random effects (RE) to analyze panel data on trade, GDP, tariffs, border effects, and indicators. The number represents Vietnam’s transport connectivity with ASEAN countries from 2004 to 2021. Research results show that transport connectivity hurts Vietnam’s trade with other countries. ASEAN. The article proposes solutions for the Government and Vietnamese export enterprises to promote intra-ASEAN trade in the direction of increasing the added value of Vietnam’s imported and exported goods within ASEAN countries and balancing between Developing intra-ASEAN and foreign trade.
This study proposes a fuzzy analytic hierarchy process (FAHP) method to support strategic decision-makers in choosing a project management research agenda. The analytical hierarchy process (AHP) model is the basic tool used in this study. It is a mathematical tool for evaluating decisions with multiple alternatives by decomposing them into successive levels according to their degree of importance. The Sustainable Development Goals (SDG) oriented theme of project management was chosen from among four themes that emerged from a strategic monitoring study. The FAHP method is an effective decision-making tool for multiple aspects of project management. It eliminates subjectivity and produces decisions based on consistent judgment.
The performance of Public Enterprises (PEs) in Namibia has been a long and contentious issue, clamored by continuous bailouts in the face of constant poor performance. The trend of financial bailouts to PEs in Namibia over the years has attracted increased attention into the dynamics of poor PE performance and their fiscal burden on the state. The Namibian government has taken active steps in cutting on PE bailouts and demanding improved performance or face closure. By looking at recent developments in the governance of PEs in Namibia, the purpose and objective of the current study is to analyze whether the current stance and trajectory of government decisions spells a post-honeymoon period in which poor performing PEs will ‘wither and survive or die’ if they do not improve their sustainability index by not relying on financial bailouts. This analysis is aided by the insights provided by the stakeholder, institutional and principal-agent theories. Through the qualitative research method, this study finds that the Namibian government has taken a new attitude and approach in which it will no longer blindly accept and tolerate the poor performance of PEs through continuous bailouts as seen in the past. PEs that are withering will now either survive (through reforms) or die (through liquidation or dissolution).
This study investigates the influence of government expenditure on the economic growth of the ASEAN-5 countries from 2000 to 2021. The study employs the Pooled Mean Group (PMG) ARDL model and robust least squares method. The importance of the current study lies in its analysis of the short and long-run impact of government expenditure on economic growth in ASEAN-5. The empirical findings demonstrate a positive relationship between government expenditure and economic growth in the long run. These results align with the Keynesian perspective, asserting that government expenditure stimulates economic growth. The study also confirms one-way causality from government expenditure to economic growth, supporting the Keynesian hypothesis. These insights hold significance for policymakers in the ASEAN-5, highlighting the necessity for policies promoting the effective allocation of productive government expenditure. Moreover, it is important to enhance systems that promote economic growth and efficiently allocated economic resources toward productive expenditures while also maintaining effective governance over such expenditures.
This study conducts a comparative analysis of various machine learning and deep learning models for predicting order quantities in supply chain tiers. The models employed include XGBoost, Random Forest, CNN-BiLSTM, Linear Regression, Support Vector Regression (SVR), K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), Bidirectional LSTM (BiLSTM), Bidirectional GRU (BiGRU), Conv1D-BiLSTM, Attention-LSTM, Transformer, and LSTM-CNN hybrid models. Experimental results show that the XGBoost, Random Forest, CNN-BiLSTM, and MLP models exhibit superior predictive performance. In particular, the XGBoost model demonstrates the best results across all performance metrics, attributed to its effective learning of complex data patterns and variable interactions. Although the KNN model also shows perfect predictions with zero error values, this indicates a need for further review of data processing procedures or model validation methods. Conversely, the BiLSTM, BiGRU, and Transformer models exhibit relatively lower performance. Models with moderate performance include Linear Regression, RNN, Conv1D-BiLSTM, Attention-LSTM, and the LSTM-CNN hybrid model, all displaying relatively higher errors and lower coefficients of determination (R²). As a result, tree-based models (XGBoost, Random Forest) and certain deep learning models like CNN-BiLSTM are found to be effective for predicting order quantities in supply chain tiers. In contrast, RNN-based models (BiLSTM, BiGRU) and the Transformer show relatively lower predictive power. Based on these results, we suggest that tree-based models and CNN-based deep learning models should be prioritized when selecting predictive models in practical applications.
Copyright © by EnPress Publisher. All rights reserved.