Leaf litter decomposition and carbon release patterns in five homegarden tree species of Kumaun Himalaya viz. Ficus palmata, Ficus auriculata, Ficus hispida, Grewia optiva and Celtis austalaris were investigated. The study was carried out for 210 days by using litter bag technique. In the current investigation, the duration needed for desertion of the original biomass of diverse leaf litter varied from 150 to 210 days and specifies a varying pattern of decomposition and carbon release among the species. Grewia optiva took the longest time to decompose (210 days) while Ficus hispida decomposed more quickly than rest of the species (150 days). The relative decomposition rate (RDR) was reported highest in Ficus hispida (0.009-0.02 g-1d-1) and lowest in Grewia optiva (0.008-0.004 g-1d-1). Carbon (%) in remaining litter was in the order: Ficus auriculata (24.4 %) >Ficus hispida (24.3%) > Celtis austaralis (19.8%) > Ficus palmata (19.7%) > Grewia optiva (19%). The relationship between percentage weight loss and time elapsed showed the significant negative correlation with carbon release pattern in all the species. Releasing nutrients into the soil through the decomposition of homegarden tree residuals is a crucial ecological function that also regulates the nutrient recycling in homegarden agroforestry practices.
Climate change is one of the most critical global challenges, driven primarily by the rapid increase in greenhouse gas concentrations. Carbon sequestration, the process by which ecosystems capture and store carbon, plays a key role in mitigating climate change. This study investigates the factors influencing carbon sequestration in subtropical planted forest ecosystems. Field data were collected from 100 randomly sampled plots of varying sizes (20 m² × 20 m² for trees, 5 m² × 5 m² for shrubs, and 1 m² × 1 m² for herbs) between February and April 2022. A total of 3,440 plants representing 36 species were recorded, with Prosopis juliflora and Prosopis cineraria as the dominant tree species and Desmostachya bipinnata as the dominant herb. Regression analysis, Pearson correlation, and structural equation modeling were performed using R software to explore relationships between carbon sequestration and various biotic and abiotic factors. Biotic factors such as diameter at breast height (DBH; R=0.94), tree height (R=0.83), and crown area (R=0.98) showed strong positive correlations with carbon sequestration. Abiotic factors like litter (R=0.37), humus depth (R=0.43), and electrical conductivity (E.C; R=0.11) also positively influenced carbon storage. Conversely, pH (R=-0.058), total dissolved solids (TDS; R=-0.067), organic matter (R=-0.1), and nitrogen (R=-0.096) negatively impacted carbon sequestration. The findings highlight that both biotic and abiotic factors significantly influence carbon sequestration in planted forests. To enhance carbon storage and mitigate climate change, efforts such as afforestation, reforestation, and conservation of subtropical forest ecosystems are essential.
An experiment was conducted to assess the effect of psychoenergetic energy in litchi as positive and negative thoughts using a simple meditation technique at ICAR-NRC on Litchi, Muzaffarpur. The plant produced 24.75 g of fruit given positive energy, while the plant with negative thought energy produced 22.12 g of fruit. The fruit and seed weight increased by 11.88% and 13.63%, respectively, due to positive energy. The number of fruit retentions increased by 23.77% due to positive energy. Anthocyanin content in pericarp was increased by 5.45% in plants given positive energy. Fruit qualities were also significantly affected by psychoenergy. TSS (Brix) was significantly increased by 13.54% in plants given positive energy as compared to negative energy, and titratable acidity was reduced by 25% due to positive energy. Ascorbic acid was also increased by 30% in plant given positive thoughts. Sun burn was reduced by 54.76% and fruit cracking by 63.64% due to energy of thought. Fruit borer infestation was reduced by 70%, and mite infestation was reduced by 90% in plants given positive energy. The psychoenergetic potential is vast, and its ability to improve crop yield and quality cannot be overstated. The hidden power of thought is being practiced by all, but mostly people do not know this power and use it in an improper manner. This is a high time when we need to practice generating powerful thoughts to change present-day agriculture and its dependents.
Proposed herein is an environment-friendly method to realize oil/water separation. Nylon mesh is exposed to atmospheric pressure plasma for surface modification, by which micro/nano structures and oxygen-containing groups are created on nylon fibers. Consequently, the functionalized mesh possesses superhydrophilicity in air and thus superoleophobicity underwater. The water pre-wetted mesh is then used to separate oil/water mixtures with the separation efficiency above 97.5% for various oil/water mixtures. Results also demonstrate that the functionalized nylon mesh has excellent recyclability and durability in terms of oil/water separation. Additionally, polyurethane sponge slice and polyester fabric are also functionalized and employed to separate oil/water mixtures efficiently, demonstrating the wide suitability of this method. This simple, green and highly efficient method overcomes a nontrivial hurdle for environmentally-safe separation of oil/water mixtures, and offers insights into the design of advanced materials for practical oil/water separation.
Work is reported on thermal-induced redshifts of quantum particle plasmon. The redshifts are predicted to be caused indirectly by the quantum size effects. The particles are enlarged when temperature increases, and consequently, quantum size effects modify the plasmon but not the band structure. It has been modeled for metallic quantum particles. The results are also instructive to other quantum systems, such as complex molecules. Every electron inside the quantum particle is taken into account. Tiny quantum size effects are harvested, and the redshift becomes significant. Experimental evidence is also given for the spectral redshift. Faujasite zeolites were synthesized. Optical spectroscopy has been carried out, and the resulting spectra showed a significant redshift with the increase in temperature.
Over 90% of cancer-related mortality worldwide is due to metastatic disease since the dynamic tumor microenvironment poses huge challenges in preventing the spread of metastatic cancer. Introducing the advent of advance biomaterials and their swift evolution, this review highlights the great potential of innovative biomaterials to proficiently tackle the metastatic tumor environment. Focusing on four distinct categories of biomaterials systems, action mechanism of biomaterials utilized in anti-tumor therapy is explained in detail: 1. Nanoplatforms sensitive to biochemical cues including pH, redox, and enzymes are known as stimuli-responsive nanoplatforms that react according their environment, 2. Smart nanoplatforms changing their morphology to penetrate impermeable physical barriers at tumor site, 3. Ingenious biomaterial participating in tumor normalization, and 4. Nanoplatforms with real-time theranostic capabilities due to innate feedback-loop mechanism. Ingeniously structured biomaterials with extensive evidence in preclinical efficacy encourage their inclusion in metastatic tumor therapy however, their utilization in medical settings is prevented due to various challenges; impractical manufacturing cost, regulatory and safety issues as well as large-scale production are major challenges restraining their widespread use. A concrete framework is proposed in this review to accelerate the biomaterial structure standardization process, following the GMP and other regulatory guidelines with the aim of implementing biomaterial-based tumor diagnostics and therapies. Since incorporating advancing technologies in tumor therapy such AI-driven, autonomous biomaterial structure or patient-specific tumor models would enable confront the proliferating metastatic tumor cases.
Copyright © by EnPress Publisher. All rights reserved.