Climate change is a pressing global challenge that requires immediate action. To address this issue effectively, it is essential to engage and empower the younger generation who will shape the future. This abstract presents the experience of Mohamed Bin Zayed University for Humanities (MBZUH) in UAE in promoting climate action through youth empowerment and environmental education.MBZUH has recognized the significance of incorporating environmental education into its curriculum to foster a generation of environmentally conscious individuals. Through a multidimensional approach, the university has developed innovative strategies to empower students, enabling them to become active participants in addressing climate change. These strategies encompass both formal and informal education, leveraging various platforms and partnerships to create a comprehensive learning environment.This study delves into the initiatives undertaken by MBZUH to empower youth in climate action. It explores the incorporation of environmental education across disciplines, integrating sustainability principles into existing courses, and offering specialized programs focused on environmental science and climate studies. Additionally, it highlights the university's efforts in promoting hands-on learning experiences, such as field trips, research projects, and community engagement, to deepen students' understanding of climate issues and inspire practical action.Furthermore, the study examines the role of MBZUH's collaboration with local and international organizations, governmental bodies, and the wider community in fostering youth empowerment and climate action. It showcases successful partnerships that have resulted in impactful initiatives, including awareness campaigns, capacity-building workshops, and youth-led environmental projects.By sharing the experience of MBZUH, this study aims to provide valuable insights and best practices for promoting climate action through youth empowerment and environmental education. It underscores the importance of empowering the next generation with the knowledge, skills, and motivation to become effective agents of change in addressing climate challenges.
The efficiencies and performance of gas turbine cycles are highly dependent on parameters such as the turbine inlet temperature (TIT), compressor inlet temperature (T1), and pressure ratio (Rc). This study analyzed the effects of these parameters on the energy efficiency, exergy efficiency, and specific fuel consumption (SFC) of a simple gas turbine cycle. The analysis found that increasing the TIT leads to higher efficiencies and lower SFC, while increasing the To or Rc results in lower efficiencies and higher SFC. For a TIT of 1400 ℃, T1 of 20 ℃, and Rc of 8, the energy and exergy efficiencies were 32.75% and 30.9%, respectively, with an SFC of 187.9 g/kWh. However, for a TIT of 900 ℃, T1 of 30 ℃, and Rc of 30, the energy and exergy efficiencies dropped to 13.18% and 12.44%, respectively, while the SFC increased to 570.3 g/kWh. The results show that there are optimal combinations of TIT, To, and Rc that maximize performance for a given application. Designers must consider trade-offs between efficiency, emissions, cost, and other factors to optimize gas turbine cycles. Overall, this study provides data and insights to improve the design and operation of simple gas turbine cycles.
This study delves into the concept of the “cultural bomb” within the framework of non-military defense empowerment strategies in Indonesia. This approach can potentially change society’s views and attitudes towards various security threats as a realization of strengthening the defense and security system of the universal people (Sishankamrata) per article 30 paragraph (2) of the 1945 constitution. By leveraging media, education, and information technology, the cultural bomb acts as a social weapon that operates powerfully in the “space of mind,” shaping behavior and actions nonviolently. The issue of cultural threats pertains to the infiltration and imposition of foreign cultural values and practices that undermine local traditions and national identity, leading to social fragmentation and weakness. This study proposes the concept of a “cultural bomb” as a policy framework to address and mitigate these cultural threats. The research employs a qualitative approach using the Delphi technique, engaging experts from cultural studies and defense strategies to reach a consensus on the strategic application of the cultural bomb. The results indicate that the cultural bomb can effectively strengthen national identity and awareness of national defense by promoting local values and cultural resilience, thus enhancing societal cohesion and mitigating the impact of foreign cultural influences. The paper outlines the components of a cultural bomb, analyzes its application in international contexts, and discusses its implications in efforts to strengthen national identity and foster a sense of national defense awareness. Focusing on the “war over space of mind” ideology, it introduces “cultural hacking” as a strategic initiative to address cultural power imbalances in the post-truth era.
This paper presents a coupling of the Monte Carlo method with computational fluid dynamics (CFD) to analyze the flow channel design of an irradiated target through numerical simulations. A novel series flow channel configuration is proposed, which effectively facilitates the removal of heat generated by high-power irradiation from the target without necessitating an increase in the cooling water flow rate. The research assesses the performance of both parallel and serial cooling channels within the target, revealing that, when subjected to equivalent cooling water flow rates, the maximum temperature observed in the target employing the serial channel configuration is lower. This reduction in temperature is ascribed to the accelerated flow of cooling water within the serial channel, which subsequently elevates both the Reynolds number and the Nusselt number, leading to enhanced heat transfer efficiency. Furthermore, the maximum temperature is observed to occur further downstream, thereby circumventing areas of peak heat generation. This phenomenon arises because the cooling water traverses the target plates with the highest internal heat generation at a lower temperature when the flow channels are arranged in series, optimizing the cooling effect on these targets. However, it is crucial to note that the pressure loss associated with the serial structure is two orders of magnitude greater than that of the parallel structure, necessitating increased pump power and imposing stricter requirements on the target container and cooling water pipeline. These findings can serve as a reference for the design of the cooling channels in the target station system, particularly in light of the anticipated increase in beam power during the second phase of the China Spallation Neutron Source (CSNS Ⅱ).
Biomimicry is increasingly being used to drive sustainable constructional development in recent years. By emulating the designs and processes of nature, biomimicry offers a wealth of opportunities to create innovative and environmentally friendly solutions. Biomimicry in industrial development: versatile applications, advantages in construction. The text emphasizes the contribution of bio-mimetic technologies to sustainability and resilience in structural design, material selection, energy efficiency, and sensor technology. Aside from addressing technical constraints and ethical concerns, we address challenges and limitations associated with adopting biomimicry. A quantitative research approach is implemented, and respondents from the construction industry rank biomimicry principles as the optimal approach to enhance sustainability in the industry. Demographic and descriptive analyses are underway. By working together, sharing knowledge, and innovating responsibly, we suggest approaches to tackle these obstacles and fully leverage the transformative power of biomimicry in promoting sustainable construction industry practices. In an evolving global environment, biomimicry reduces environmental impact and enhances efficiency, resilience, and competitiveness in construction industries.
Copyright © by EnPress Publisher. All rights reserved.