With the rising global consumer demand for green and healthy food, the tea industry is facing unprecedented competitive pressure. Therefore, how to build tea enterprises with sustainable competitiveness has become a key issue facing the industry. This paper firstly reviews the concept of traceability systems and their evolution and, based on the theory of enterprise competitive advantage, explores the influence mechanism of traceability as a strategic resource on the long-term competitiveness of tea enterprises; secondly, it analyzes the multi-dimensional role of traceability on enterprise competitiveness from five aspects, namely, quality and safety control and guarantee, brand image shaping and trust construction, market dynamics response and consumer feedback, risk response and product recall, as well as technological innovation and efficiency enhancement; finally, combined with the above analysis, this paper constructs a theoretical framework for the competitiveness of tea enterprises, integrates the impact of traceability in different dimensions, and proposes a multi-level competitiveness enhancement model. Through this framework, tea enterprises can more comprehensively understand and grasp the close relationship between traceability and the long-term competitive advantage of enterprises and then make strategic adjustments according to their own actual situation so as to realize sustainable competitiveness enhancement in the future market competition.
This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
The freight transport chain brings together several types of players, particularly upstream and downstream players, where it is connected to both nodal and linear logistics infrastructures. The territorial anchoring of the latter depends on a good level of collaboration between the various players. In addition to the flow of goods from various localities in the area, the Autonomous Port of Lomé generates major flows to and through the port city of Lomé, which raises questions about the sustainability of these various flows, which share the road with passenger transport flows. The aim of this study is to analyse the challenges associated with the sustainability of goods flows. The methodology is based on direct observations of incoming and outgoing flows in the Greater Lomé Autonomous District (DAGL) and semi-directive interviews with the main players in urban transport and logistics. The results show that the three main challenges to the sustainability of goods transport are congestion (28%), road deterioration (22%) and lack of parking space (18%).
In recent years, e-sports, as an emerging form of competition, has been rapidly integrated into the daily life of college students, and with its rich interactivity, instant feedback and teamwork, e-sports provides them with an effective channel for emotional catharsis and psychological regulation. This study takes students from four universities as the survey object and adopts quantitative research method to analyze the relationship between different types of e-sports activities and psychological stress resistance through questionnaire survey method combined with spss. The samples were randomly sampled, and a total of 500 valid questionnaires were collected. The results of the study show that: 1. In terms of participation, the ability of students to withstand academic stress and life stress is significantly improved, and e-sports is an effective way to regulate emotions and relieve stress; 2. the three types of games (First-person Shooter, Multiplayer Online Battle Arena, Real-Time Strategy Game) have different impacts on stress tolerance, of which FPS has the greatest impact on stress tolerance; 3. the frequency of playing e-sports affects your stress tolerance; 4. teamwork and strategy play an important role in e-sports resilience.
Copyright © by EnPress Publisher. All rights reserved.