With the rising global consumer demand for green and healthy food, the tea industry is facing unprecedented competitive pressure. Therefore, how to build tea enterprises with sustainable competitiveness has become a key issue facing the industry. This paper firstly reviews the concept of traceability systems and their evolution and, based on the theory of enterprise competitive advantage, explores the influence mechanism of traceability as a strategic resource on the long-term competitiveness of tea enterprises; secondly, it analyzes the multi-dimensional role of traceability on enterprise competitiveness from five aspects, namely, quality and safety control and guarantee, brand image shaping and trust construction, market dynamics response and consumer feedback, risk response and product recall, as well as technological innovation and efficiency enhancement; finally, combined with the above analysis, this paper constructs a theoretical framework for the competitiveness of tea enterprises, integrates the impact of traceability in different dimensions, and proposes a multi-level competitiveness enhancement model. Through this framework, tea enterprises can more comprehensively understand and grasp the close relationship between traceability and the long-term competitive advantage of enterprises and then make strategic adjustments according to their own actual situation so as to realize sustainable competitiveness enhancement in the future market competition.
This study investigates the dynamic landscape of agritourism in Thailand, emphasizing innovations, challenges, and policy implications in the post-COVID-19 era. Employing a qualitative approach, including a comprehensive literature review and semi-structured interviews with stakeholders, the research identifies key agritourism models, such as immersive learning experiences, technology-driven agritourism, and unconventional practices like salt and coconut plantations. Findings reveal that agritourism has adapted to shifting market demands through diversification, technological integration, and a heightened focus on sustainability. Notably, technology adoption in precision farming and hydroponics enhances resource efficiency and visitor engagement, while initiatives like rice paddy field tourism and highland agritourism showcase the cultural and ecological richness of rural landscapes. The study underscores the critical role of policy frameworks, infrastructure development, and community empowerment in fostering sustainable agritourism practices. Key policy recommendations include targeted subsidies, capacity-building programs, and harmonized regulatory frameworks to address challenges such as financial constraints, regulatory ambiguities, and inadequate infrastructure. This research contributes to the broader discourse on sustainable tourism and rural development, aligning agritourism with the United Nations Sustainable Development Goals (SDGs). By synthesizing insights on innovation, resilience, and sustainability, this study offers a comprehensive roadmap for policymakers, practitioners, and academics to leverage agritourism as a vehicle for rural revitalization and global sustainability. Future research directions are proposed to explore the long-term impacts of technological integration, community empowerment, and resilience strategies in agritourism.
This study investigates the performance assessment of methanol and water as working fluid in a solar-powered vapour absorption refrigeration system. This research clarifies the system’s performance across a spectrum of operating conditions. Furthermore, the HAP software was utilized to determine and scrutinize the cooling load, facilitating a comparative analysis between software-based results and theoretical calculations. To empirically substantiate the findings, this research investigates methanol-water as a superior refrigerant compared to traditional ammonia- water and LiBr-water systems. Through experimental analysis and its comparison with previous research, the methanol-water refrigeration system demonstrated higher cooling efficiency and better environmental compatibility. The system’s performance was evaluated under varying conditions, showing that methanol-water has a 1% higher coefficient of performance (COP) compared to ammonia-water systems, proving its superior effectiveness in solar-powered applications. This empirical model acts as a pivotal tool for understanding the dynamic relationship between methanol concentration (40%, 50%, 60%) and system performance. The results show that temperature of the evaporator (5–15 ℃), condenser (30 ℃–50 ℃), and absorber (25 ℃–50 ℃) are constant, the coefficient of performance (COP) increases with increase in generator temperature. Furthermore, increasing the evaporator temperature while keeping constant temperatures for the generator (70 ℃–100 ℃), condenser, and absorber improves the COP. The resulting data provides profound insights into optimizing refrigerant concentrations for improved efficiency.
The Malaysian government’s efforts to promote solar photovoltaic (PV) usage among households face a challenge due to its low adoption rate. This study delves into the factors influencing the exponential adoption of solar PV electricity generation among landed residential property owners in Malaysia. The research aims to comprehensively examine the predictors influencing the adoption of solar PV systems among Malaysian households. Hence, the study employs an enhanced Theory of Planned Behavior framework, integrating sustainable energy security dimensions such as availability, affordability, efficiency, acceptability, regulation, and governance. The sample comprised 556 Malaysian residents who owned and resided in the landed properties. The home locations where at least one solar PV installation existed within a residential street. Snowball sampling was employed through referrals, leveraging social and community networks. Collected data was analyzed using the partial least squares structural equation modeling. Attitude, affordability, and acceptability emerged as pivotal factors significantly impacting the intention to use solar PV systems among Malaysian households. This research not only enriches academic discourse but also offers practical implications for policymakers, guiding the formulation of targeted strategies to promote sustainable energy practices and facilitate the widespread adoption of solar PV systems in Malaysia.
The freight transport chain brings together several types of players, particularly upstream and downstream players, where it is connected to both nodal and linear logistics infrastructures. The territorial anchoring of the latter depends on a good level of collaboration between the various players. In addition to the flow of goods from various localities in the area, the Autonomous Port of Lomé generates major flows to and through the port city of Lomé, which raises questions about the sustainability of these various flows, which share the road with passenger transport flows. The aim of this study is to analyse the challenges associated with the sustainability of goods flows. The methodology is based on direct observations of incoming and outgoing flows in the Greater Lomé Autonomous District (DAGL) and semi-directive interviews with the main players in urban transport and logistics. The results show that the three main challenges to the sustainability of goods transport are congestion (28%), road deterioration (22%) and lack of parking space (18%).
Copyright © by EnPress Publisher. All rights reserved.