Objectives: The unprecedented COVID-19 pandemic has intensified the stress on blood banks and deprived the blood sources due to the containment measures that restrict the movement and travel limitations among blood donors. During this time, Malaysia had a significant 40% reduction in blood supply. Blood centers and hospitals faced a huge challenge balancing blood demand and collection. The health care systems need a proactive plan to withstand the uncertain situation such as the COVID-19 pandemic. This study investigates the psychosocial factors that affect blood donation behavior during a pandemic and aims to propose evidence-based strategies for a sustainable blood supply. Study design: Qualitative design using focus group discussion (FGD) was employed. Methods: Data were acquired from the two FGDs that group from transfusion medicine specialists (N = 8) and donors (N = 10). The FGD interview protocol was developed based on the UTM Research Ethics Committee’s approval. Then, the data was analyzed using Nvivo based on the General Inductive Approach (GIA). Results: Analysis of the text data found that the psychology of blood donation during the pandemic in Malaysia can be classified into four main themes: (i) reduced donation; (ii) motivation of donating blood; (iii) trends of donation; and (iv) challenges faced by the one-off, occasional, and non-donors. Conclusions: Based on the emerging themes from the FGDs, this study proposes four psycho-contextual strategies for relevant authorities to manage sustainable blood accumulation during the pandemic: (1) develop standard operating procedure for blood donors; (2) organize awareness campaigns; (3) create a centralized integrated blood donors database; and (4) provide innovative Blood Donation Facilities.
In this study, we utilized a convolutional neural network (CNN) trained on microscopic images encompassing the SARS-CoV-2 virus, the protozoan parasite “plasmodium falciparum” (causing of malaria in humans), the bacterium “vibrio cholerae” (which produces the cholera disease) and non-infected samples (healthy persons) to effectively classify and predict epidemics. The findings showed promising results in both classification and prediction tasks. We quantitatively compared the obtained results by using CNN with those attained employing the support vector machine. Notably, the accuracy in prediction reached 97.5% when using convolutional neural network algorithms.
The study examined the socio-demographic factors affecting access to and utilization of social welfare services in Yenagoa Local Government Area of Bayelsa State, Nigeria. Quantitative and qualitative approaches were adopted to select 570 respondents from the study area. Probability and non-probability sampling techniques were adopted in the selection of communities, and respondents. The quantitative data were analyzed using frequency distribution tables and percentages, while chi-square statistic was used to determine the relationship between socio-demographic variables and access to and utilization of social welfare services. The qualitative data were analyzed in themes as a complement to the quantitative data. This study reveals that although all the respondents reported knowing available social welfare services, 44.3% reported not having access to existing social services due to factors connected to serendipity variables, such as terrain condition, ethnicity and knowing someone in government. Therefore, the study recommends that the government and other stakeholders should push for the massive delivery of much-needed social welfare services to address the issue of welfare service deficit across the nation, irrespective of the ethnic group and whether the community is connected to the government of the day or not, primarily in rural areas.
Based on the population change data of 2005–2009, 2010–2014, 2015–2019 and 2005–2019, the shrinking cities in Northeast China are determined to analyze their spatial distribution pattern. And the influencing factors and effects of shrinking cities in Northeast China are explored by using multiple linear regression method and random forest regression method. The results show that: 1) In space, the shrinking cities in Northeast China are mainly distributed in the “land edge” areas represented by Changbai Mountain, Sanjiang Plain, Xiaoxing’an Mountain and Daxing’an Mountain. In terms of time, the contraction center shows an obvious trend of moving northward, while the opposite expansion center shows a trend of moving southward, and the shrinking cities gather further; 2) in the study of influencing factors, the results of multiple linear regression and random forest regression show that socio-economic factors play a major role in the formation of shrinking cities; 3) the precision of random forest regression is higher than that of multiple linear regression. The results show that per capita GDP has the greatest impact on the contraction intensity, followed by the unemployment rate, science and education expenses and the average wage of on-the-job workers. Among the four influencing factors, only the unemployment rate promotes the contraction, and the other three influencing factors inhibit the formation of shrinking cities to various degrees.
The COVID-19 epidemic caused unexpected complications, complexities and challenges in higher educational institutions (HEIs). In order to promote and strengthen the role of women leadership, this study aimed to clarify the unique challenges faced by female leaders at Saudi HEIs during the epidemic, find possible solutions to these challenges, and provide policy as well as management implications. A systematic literature review (SLR) was conducted, examining 27 records (i.e., research papers, articles and conference studies). The data were qualitatively analysed and categorized based on themes like challenges faced, opportunities recognized, and solutions proposed. Findings highlighted women leaders in Saudi HEIs grappled with multiple challenges, including technological barriers, cultural constraints, and increased workloads. Merging challenges with solvable strategies offers a forward-looking perspective, advocating for systemic changes that can shape a resilient and inclusive future for HEIs in Saudi Arabia.
This systematic literature review examines the convergence of entrepreneurship and information technology between 2005 and 2024. It investigates how the emergence of information technologies such as social networks, smart devices, big data, and cloud computing have transformed business operations and entrepreneurial approaches. The study use technologies such as Bibliometrix to analyze academic literature and identify research trends, knowledge structures, and their evolutionary routes. During the specified time frame, a grand total of 292 articles were published by 777 writers. These publications have played a key role in redirecting academic focus from traditional entrepreneurship to the field of digital entrepreneurship and the applications of information technology. A thematic analysis uncovers a shift from theoretical investigation to practical implementations and multidisciplinary research, while a co-citation analysis highlights important contributors and influential works. This study emphasizes the crucial importance of information technology in influencing entrepreneurial behaviors and strategic business decisions. It also offers valuable insights for future research and entrepreneurial practice in the information age.
Copyright © by EnPress Publisher. All rights reserved.