This review summarizes some of the recent advances related to shallow penetration conformance sealants (SPCS) based on cross-linked polymer nanocomposite gels. The cross-linked polymer nanocomposite gels formed a three-dimensional (3D) gel structure upon contact with either water or oil when placed at the downhole. Therefore, the cross-linked polymer nanocomposite gels offer a total or partial water shutoff. Numerous polymeric gels and their nanocomposites prepared using various techniques have been explored to address the conformance problems. Nevertheless, their instability at high temperature, high pressure, and high salinity down-hole conditions (HT-HP-HS) often makes the treatments unsuccessful. Incorporating inert particles into the cross-linked polymer nanocomposite gel matrices improves stability under harsh down-hole conditions. This review discusses potential polymeric nanocomposite gels and their successful application in conformance control.
Graphene and derivatives have been frequently used to form advanced nanocomposites. A very significant utilization of polymer/graphene nanocomposite was found in the membrane sector. The up-to-date overview essentially highlights the design, features, and advanced functions of graphene nanocomposite membranes towards gas separations. In this concern, pristine thin layer graphene as well as graphene nanocomposites with poly(dimethyl siloxane), polysulfone, poly(methyl methacrylate), polyimide, and other matrices have been perceived as gas separation membranes. In these membranes, the graphene dispersion and interaction with polymers through applying the appropriate processing techniques have led to optimum porosity, pore sizes, and pore distribution, i.e., suitable for selective separation of gaseous molecules. Consequently, the graphene-derived nanocomposites brought about numerous revolutions in high-performance gas separation membranes. The structural diversity of polymer/graphene nanocomposites has facilitated the membrane selective separation, permeation, and barrier processes, especially in the separation of desired gaseous molecules, ions, and contaminants. Future research on the innovative nanoporous graphene-based membrane can overcome design/performance-related challenging factors for technical utilizations.
Oil spill clean-up is a long-standing challenge for researchers to prevent serious environmental pollution. A new kind of oil-absorbent based on silicon-containing polymers (e.g., poly(dimethylsiloxane) (PDMS)) with high absorption capacity and excellent reusability was prepared and used for oil-water separation. The PDMS-based oil absorbents have highly interconnected pores with swellable skeletons, combining the advantages of porous materials and gels. On the other hand, polymer/silica composites have been extensively studied as high-performance functional coatings since, as an organic/inorganic composite material, they are expected to combine polymer flexibility and ease of processing with mechanical properties. Polymer composites with increased impact resistance and tensile strength without decreasing the flexibility of the polymer matrix can be achieved by incorporating silica nanoparticles, nanosand, or sand particles into the polymeric matrices. Therefore, polymer/silica composites have attracted great interest in many industries. Some potential applications, including high-performance coatings, electronics and optical applications, membranes, sensors, materials for metal uptake, etc., were comprehensively reviewed. In the first part of the review, we will cover the recent progress of oil absorbents based on silicon-containing polymers (PDMS). In the later details of the review, we will discuss the recent developments of functional materials based on polymer/silica composites, sand, and nanosand systems.
Prepolymers containing isocyanates must be prevented from curing when exposed to moisture, which can be achieved by blocking the isocyanate groups with a suitable agent. The study carefully examines several blocking agents, including methyl ethyl ketoxime (MEKO), caprolactam, and phenol, and concludes that methyl ethyl ketoxime is the best choice. Spectroscopic and thermal analyses, as well as oven curing studies, are conducted with various blocking agents and isocyanate prepolymer to castor oil ratios, revealing MEKO to be the most effective blocking agent which gets unblocked at higher temperatures.
Deficiencies in postharvest technology and the attack of phytopathogens cause horticultural products, such as tomatoes to have a very short shelf life. In addition to the economic damage, this can also have negative effects on health and the environment. The objective of this work is to evaluate an active coating of sodium alginate in combination with eugenol-loaded polymeric nanocapsules (AL-NP-EUG) to improve the shelf life of tomato. Using the nanoprecipitation technique, NPs with a size of 171 nm, a polydispersity index of 0.113 and a zeta potential of −2.47 mV were obtained. Using the HS-SPME technique with GC-FID, an encapsulation efficiency percentage of 31.85% was determined for EUG. The shelf-life study showed that the AL-NP-EUG-treated tomatoes maintained firmness longer than those without the coating. In addition, the pathogenicity test showed that tomatoes with AL-NP-EUG showed no signs of damage caused by the phytopathogen Colletotrichum gloesporoides. It was concluded that the formulation of EUG nanoencapsulated and incorporated into the edible coating presents high potential for its application as a natural nanoconservative of fruit and vegetable products such as tomato.
Atom transfer radical polymerization (ATRP) is a kind of controllable reactive radical polymerization method with potential application value. The modification of graphene oxide (GO) by ATRP reaction can effectively control various graft polymer molecules Chain length and graft density, giving GO different functionality, such as good solvent dispersibility, environmental sensitive stimulus responsiveness, biocompatibility, and the like. In this paper, ATRP reaction and GO surface non-covalent bonding ATRP polymer molecular chain were directly initiated from GO surface immobilization initiator. The ATRP reaction modified GO was reviewed, and the process conditions and research methods of ATRP modification reaction were summarized, as well as pointed out the functional characteristics and application prospect of GO functionalized composites.
Copyright © by EnPress Publisher. All rights reserved.