Our environment has been significantly impacted by man-made pollutants, primarily due to industries making substantial use of synthetic chemicals, resulting in significant environmental consequences. In this research investigation, the co-precipitation approach was employed for the synthesis of cellulose-based ferric oxide (Fe2O3/cellulose) and copper oxide nanoparticles (CuOx-NPs). Scanning electron microscopy (SEM) analyses were conducted to determine the properties of the newly synthesised nanoparticles. Furthermore, the synthesized nanoparticles were employed for eliminating chromium from aqueous media under various conditions, including temperature, contact time, adsorbent concentration, adsorbate concentration, and pH. Additionally, the synthesised materials were used to recover Cr(VI) ions from real samples, including tap water, seawater, and industrial water, and the adsorptive capacity of both materials was evaluated under optimal conditions. The synthesis of Fe2O3/cellulose and CuOx-NPs proved to be effective, as indicated by the outcomes of the study.
In marginalized ecosystem-dependent rural communities, access to ecosystem services plays a crucial role in achieving sustainable livelihoods. This study was conducted to find out the influence of various livelihood capital components on the access mechanism for forest-based Provisioning Services (PS) in some selected villages of the Gosaba Block on the fringes of the Sundarban. The contribution of the livelihood capitals to gain access to Provisioning Services (PS) was identified using factor analysis on 160 households, selected through cluster random sampling. The sustainability levels of livelihood capitals were analyzed using the Prescott-Allen method (2001). The natural, financial, social, and physical capitals were significantly below average, while the human capital was close to average. Enhancement of human, physical, financial, and social capital, ease in issuing Biometric Fisherman cards for entering forests, flexibility in borrowing loans, and ecotourism by involving local villagers must be encouraged to enhance forest-based provisioning services in the near future.
The process of digitalization within the realm of tourism is not merely a trend but rather a significant catalyst that is rapidly propelling the comprehensive transformation of the tourism industry into a new era of technological advancement. This intricate process fundamentally involves the seamless integration and application of cutting-edge digital technologies across various tourism-related activities and services. The advent of innovative solutions that harness the immense capabilities of artificial intelligence, the analytical power of big data, the security features of blockchain, and the interconnectedness provided by the Internet of Things primarily serves to enhance the overall quality of services offered, optimize pricing strategies to align with market demands, and improve risk management protocols within the industry. This paper methods uses 100 Scopus indexed papers about Smart Tourism Development in Kazakhstan. It is imperative to underscore the fact that the ongoing digitalization process, while offering numerous advantages, simultaneously imposes rigorous new requirements concerning the qualifications and competencies of staff members, as well as the paramount importance of data security measures and the protection of consumer rights in the digital environment. The effective management of this digital transformation necessitates a holistic and integrated approach that encompasses not only the development of robust infrastructure but also the enhancement of digital literacy among employees and the establishment of a dynamic and innovative ecosystem that encourages creativity and adaptability.
The activities and characteristics of heritage, cultural, and creative tourism are notably distinct despite the fact that they are frequently confused and misunderstood. Moreover, these types of tourism have been significantly affected by the COVID-19 pandemic. This review article aims to explore the characteristics of three types of tourism, both pre- and post-pandemic, and seeks to propose sustainable solutions with new opportunities for the tourism industry. The article adopts a PRISMA flow diagram and VOSviewer to perform a systematic literature review, ultimately selecting 179 articles from the Scopus, ScienceDirect, and Google Scholar databases and grouping them into five clusters: 1) heritage, cultural, and creative tourism; 2) co-creation; 3) creative city; 4) sustainability; and 5) technology and innovation. Consequently, this review article proposes a final framework presenting five related clusters suggesting sustainable solutions for creative tourism. It may aid the tourism industries in their transition to creative tourism, which is more sustainable and broadly focused while ensuring safety and enhancing income for local communities in the post-pandemic period.
This work aimed to evaluate the effects of using three different substrates in the semi-hydroponic culture of lettuce (Lactuca sativa L.) using two different nutrient solutions. A first trial was performed with a nutrient solution rich in macronutrients and micronutrients suitable for lettuce culture, and a second trial with a nutrient solution with pretreated wastewater from effluents of a cheese factory. The experimental design was in randomized blocks with three repetitions and three substrates were used: perlite, coconut fiber, and expanded clay, in both trials. The following parameters were observed: number of leaves, diameter of the cabbage, fresh and dry weight of the aerial part, chlorophyll index and mineral composition of the lettuce. For the first trial, the highest result for the number of leaves (20 leaves), fresh weight (142.0 g) and dry weight (7.2 g) of the aerial part was obtained in the plants growing on perlite. In the second trial, the highest result for the number of leaves (28 leaves), diameter of cabbage (26.7 cm), fresh weight (118.8 g) and dry weight (9.5 g) of the aerial part were achieved by the plants that were grown in coconut fiber. The nutrient solutions were analyzed after each irrigation cycle to verify the possibility of their discharge into the environment. Several parameters were analyzed: pH, conductivity, redox potential, nitrates, nitrites, ammoniacal nitrogen, chlorides, hardness, calcium, phosphates, sodium, potassium, chemical oxygen demand (COD) and magnesium. Ammoniacal nitrogen was found to be the only nutrient that can limits the discharge of nutrient solutions into the environment. It was also proven that the plants, besides obtaining the nutrients necessary for their development in the semi-hydroponic system with the nutrient solution with pre-treated residual water, also functioned as a purification system, allowing the said nutrient solution to be discharged into the environment at the end of each cycle.
In this study, the effect of porogenic solvents on pore size distribution of the polycaprolactone (PCL) thin films was investigated. Five thin PCL films were prepared using the solvent-casting method. Chloroform, Methylene Chloride (MC) and three different compositions of MC/ Dimethylformamide (DMF) (80/20, 50/50 and 20/80) were used as solvents. Scanning Electron Microscopy (SEM) investigations were employed to study morphology and consequently the pore size distribution of the prepared films. The PCL films made by chloroform and MC as a solvent were completely non-porous. Whereas the other films (made by a combination of MC and DMF) showed both uni-modal and bi-modal pore size distributions.
Copyright © by EnPress Publisher. All rights reserved.