The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
In recent times, there has been a surge of interest in the transformative potential of artificial intelligence (AI), particularly within the realm of online advertising. This research focuses on the critical examination of AI’s role in enhancing customer experience (CX) across diverse business applications. The aim is to identify key themes, assess the impact of AI-powered CX initiatives, and highlight directions for future research. Employing a systematic and comprehensive approach, the study analyzes academic publications, industry reports, and case studies to extract theoretical frameworks, empirical findings, and practical insights. The findings underscore a significant transformation catalyzed by AI integration into Customer Relationship Management (CRM). AI enables personalized interactions, fortifies customer engagement through interactive agents, provides data-driven insights, and empowers informed decision-making throughout the customer journey. Four central themes emerge: personalized service, enhanced engagement, data-driven strategy, and intelligent decision-making. However, challenges such as data privacy concerns, ethical considerations, and potential negative experiences with poorly implemented AI persist. This article contributes significantly to the discourse on AI in CRM by synthesizing the current state, exploring key themes, and suggesting research avenues. It advocates for responsible AI implementation, emphasizing ethical considerations and guiding organizations in navigating opportunities and challenges.
This exploratory study aims to identify the main characteristics and relationships between artificial intelligence (AI) and broadband development in Asia and the Pacific. Broadband networks are the foundation and prerequisite for the development of AI. But what types of broadband networks would be conducive are not adequately discussed so far. Furthermore, in addition to broadband networks, other factors, such as income level, broadband quality, and investment, are expected to influence the uptake of AI in the region. The findings are synthesized into a set of policy recommendations at the end of the article, which highlights the need for regional cooperation through an initiative, such as the Asia-Pacific Information Superhighway (AP-IS).
With society’s continuous development and progress, artificial intelligence (AI) technology is increasingly utilized in higher education, garnering increased attention. The current application of AI in higher education impacts teachers’ instructional methods and students’ learning processes. While acknowledging that AI advancements offers numerous advantages and contribute significantly to societal progress, excessive reliance on AI within education may give rise to various issues, students’ over-dependence on AI can have particularly severe consequences. Although many scholars have recently conducted research on artificial intelligence, there is insufficient analysis of the positive and negative effects on higher education. In this paper, researchers examine the existing literature on AI’s impact on higher education to explore the opportunities and challenges presented by this super technology for teaching and learning in higher educational institutions. To address our research questions, we conducted literature searches using two major databases—Scopus and Web of Science—and we selected articles using the PRISMA method. Findings indicate that AI plays a significant role in enhancing student efficiency in academic tasks and homework; However, when considering this issue from an ethical standpoint, it becomes apparent that excessive use of AI hinders the development of learners’ knowledge systems while also impairing their cognitive abilities due to an over-reliance on artificial technology. Therefore, our research provides essential guidance for stakeholders on the wise use of artificial intelligence technology.
In the Fourth Industrial Revolution (4IR) era, the rapid digitalisation of services poses both opportunities and challenges for the banking sector. This study addresses how adopting artificial intelligence (AI) and online and mobile banking advancements can influence customer satisfaction, particularly in Kaduna State, Nigeria. Despite significant investments in AI and digital banking technologies, banks often struggle to align these innovations with customer expectations and satisfaction. Using Structural Equation Modeling (SEM), this research investigates the impact of customer satisfaction with online banking (C_O) on AI integration (I_A) and mobile banking convenience (C_M). The SEM model reveals that customer satisfaction with online banking significantly influences AI integration (path coefficient of 0.40) and mobile banking convenience (path coefficient of 0.68). These results highlight a crucial problem: while technological advancements in banking are growing, their effectiveness is highly dependent on customer satisfaction with existing digital services. The study underscores the need for banks to prioritise enhancing online banking experiences as a strategic lever to improve AI integration and mobile banking convenience. Consequently, the research recommends that Nigerian banks develop comprehensive frameworks to evaluate and optimise their technology integration strategies, ensuring that technological innovations align with customer needs and expectations in the rapidly evolving digital landscape.
The major goal of decisions made by a business organization is to enhance business performance. These days, owners, managers and other stakeholders are seeking for opportunities of modelling and automating decisions by analysing the most recent data with the help of artificial intelligence (AI). This study outlines a simple theoretical model framework using internal and external information on current and potential clients and performing calculations followed by immediate updating of contracting probabilities after each sales attempt. This can help increase sales efficiency, revenues, and profits in an easily programmable way and serve as a basis for focusing on the most promising deals customising personal offers of best-selling products for each potential client. The search for new customers is supported by the continuous and systematic collection and analysis of external and internal statistical data, organising them into a unified database, and using a decision support model based on it. As an illustration, the paper presents a fictitious model setup and simulations for an insurance company considering different regions, age groups and genders of clients when analysing probabilities of contracting, average sales and profits per contract. The elements of the model, however, can be generalised or adjusted to any sector. Results show that dynamic targeting strategies based on model calculations and most current information outperform static or non-targeted actions. The process from data to decision-making to improve business performance and the decision itself can be easily algorithmised. The feedback of the results into the model carries the potential for automated self-learning and self-correction. The proposed framework can serve as a basis for a self-sustaining artificial business intelligence system.
Copyright © by EnPress Publisher. All rights reserved.