Objective: to achieve accurately and rapidly the mapping of agricultural land use and crop distribution at the township scale. Methods: this study, based on specific methods, such as, time-series remote sensing index threshold classification and maximum likelihood, classifies each land use type and extracts crop spatial information, under the guidance of Sentinel-2A remote sensing images, to carry out agricultural land use mapping at township scale. And the mapping concerned will be verified by comparing with an agricultural spatial information map of a 0.5 m resolution, which is based on WorldVieW-2 fused images. Results: (1) the area accuracy of grain and oil crop land, vegetable land, agricultural facilities land and garden land is fairly good, with 92.93%, 98.98%, 95.71% and 95.14% respectively, and within 8% variation from actual area; (2) the spatial information of plot boundary, farmland road network, and canal network produced by OSM road data and historical high-resolution images was overlayed with the classification results of Sentinel-2A multi-spectral image for mapping, which can improve the accuracy of plot boundary information of classification results for the image with 10 m resolution. Conclusions: the use of multi-source information fusion method, agricultural land use and crop distribution space big data produced by Sentinel-2A optical image, can effectively improve the accuracy and timeliness of land use mapping at the township scale, to provide technical reference for the application of remote sensing big data to carry out agricultural landscape analysis at the township scale, optimization and adjustment of agricultural structure, etc.
This article explored mineral resources and their relation to structural settings in the Central Eastern Desert (CED) of Egypt. Integration of remote sensing (RS) with aeromagnetic (AMG) data was conducted to generate a mineral predictive map. Several image transformation and enhancement techniques were performed to Landsat Operational Land Imager (OLI) and Shuttle Radar Topography Mission (SRTM) data. Using band ratios and oriented principal component analysis (PCA) on OLI data allowed delineating hydrothermal alteration zones (HAZs) and highlighted structural discontinuity. Moreover, processing of the AMG using Standard Euler deconvolution and residual magnetic anomalies successfully revealed the subsurface structural features. Zones of hydrothermal alteration and surface/subsurface geologic structural density maps were combined through GIS technique. The results showed a mineral predictive map that ranked from very low to very high probability. Field validation allowed verifying the prepared map and revealed several mineralized sites including talc, talc-schist, gold mines and quartz veins associated with hematite. Overall, integration of RS and AMG data is a powerful technique in revealing areas of potential mineralization involved with hydrothermal processes.
The objective of this research is to examine the effects of income inequality, governance quality, and their interaction on environmental quality in Asian countries. Time series data are obtained from 45 Asian countries for the period 1996–2020 for this empirical analysis. The research has performed various econometric tests to ensure the robustness and reliability of the results. We have addressed different econometric issues, such as autocorrelation, heteroskedasticity, and cross-sectional dependence, using the Driscoll-Kraay (DK) standard error estimation and endogeneity issues by the system generalized method of moments (S-GMM). The results of the study revealed that income inequality and governance quality have a positive impact on environmental degradation, while the interaction of governance quality with income inequality has a negative effect on it. In addition, economic growth, population growth, urbanization, and natural resource dependency are found to deteriorate the quality of the environment. The findings of the study offer insightful policies to reduce environmental degradation in Asian countries.
Taxus cuspidata Sieb. ET. Zucc. is a taxus of Taxaceae, a rare third-order relict species distributed in northeastern China, and a wild endangered plant species protected by national level I. Taxol (paclitaxel, trade name taxol) and cephalomannine (cephalomannine) are all diterpenoids contained in the genus Taxus, with broad-spectrum anti-tumor activity and unique anti-cancer mechanism. In this study, the distribution of paclitaxel and cephalomannine in the leaves of Taxus cuspidata in different parts and different growth stages was discussed. The results showed that the content of two substances in the leaves of the majority of the crowns was lower than that of the biennial and tertiary there were no significant differences in the contents of two substances in the two-year and three-year-old
foliage. There was no significant difference in the contents of the two layers in the three levels of the noodles, and
the content of the male was slightly higher than that of the dark. The content of paclitaxel in the leaves of natural
northeast yew was the highest at dormancy period, and the content of flowering and fruit was not much different. The
content of Cephalotaxin was the highest in dormancy period, and that of cephalosporin the content of paclitaxel and
cephalomannine in each plant were significantly different. There was significant difference between the two plants.
Health data governance is essential for optimal processing of data collection, sharing, and reuse. Although the World Health Organization (WHO) has proposed practical guidelines for managing health data during the pandemic, the Organization for Economic Cooperation and Development (OECD) found that many countries still lack the use of health data for decision-making. Therefore, this research aimed to identify and assess the challenges faced by health organization in implementing health data governance from various countries based on research articles. The challenges were assessed based on key components of health data governance from practitioner and scientist perspectives. These components include stakeholder, policy, data management, organization, data governance maturity assessment, and goals. The method used followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for collecting and reporting. Data were collected from several databases online with large repositories of academic studies, including IEEE Xplore, ScienceDirect, National Library of Medicine, ProQuest, Taylor and Francis Group, Scopus, and Wiley Online libraries. Based on the 41 papers reviewed, the results showed that policy was found to be the biggest challenge for health data governance. This was followed by data management such as quality, ownership, and access, as well as stakeholders and data governance organization. However, there were no challenges regarding maturity assessment and data governance goals, as the majority of research focused on implementation. Policy and policymaker awareness were identified as major components for the implementation of health data governance. To address challenges in data management and governance organization, creating committees focused on these components proved to be an effective solution. These results provided valuable recommendations for regulators and leaders in a healthcare organization to optimally implement health data governance.
The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
Copyright © by EnPress Publisher. All rights reserved.