This study examines the relationship between macroeconomic determinants and education levels in eight selected African oil-exporting countries (AOECs) over the period 2000–2022. Drawing on human capital theory, the paper scrutinizes the impact of factors such as income inequality, health outcome, economic growth, human development, unemployment, education expenditure, institutional quality, and energy consumption on education levels. Employing robust estimation techniques such as fixed effects (FE), random effects (RE), pooled mean group (PMG) and cross-section autoregressive distributed lag model (CS-ARDL), the study unveils vital static and dynamic interactions among these determinants and education levels. Findings reveal notable positive and significant connections between education levels and some of the variables—human capital development, institutional quality, government expenditure on education, and energy consumption, while income inequality demonstrates a consistent negative relationship. Unexpectedly, health outcomes exhibit a negative impact on education levels, warranting further investigation. Furthermore, the analysis deepens understanding of long-run and short-run relationships, highlighting, for example, the contradictory impact of gross domestic product (GDP) and unemployment on education levels in AOECs. Finally, the study recommends targeted human development programs, enhanced public investment in education, institutional reforms for good governance, and sustainable energy infrastructure development.
This study evaluated the performance of several machine learning classifiers—Decision Tree, Random Forest, Logistic Regression, Gradient Boosting, SVM, KNN, and Naive Bayes—for adaptability classification in online and onsite learning environments. Decision Tree and Random Forest models achieved the highest accuracy of 0.833, with balanced precision, recall, and F1-scores, indicating strong, overall performance. In contrast, Naive Bayes, while having the lowest accuracy (0.625), exhibited high recall, making it potentially useful for identifying adaptable students despite lower precision. SHAP (SHapley Additive exPlanations) analysis further identified the most influential features on adaptability classification. IT Resources at the University emerged as the primary factor affecting adaptability, followed by Digital Tools Exposure and Class Scheduling Flexibility. Additionally, Psychological Readiness for Change and Technical Support Availability were impactful, underscoring their importance in engaging students in online learning. These findings illustrate the significance of IT infrastructure and flexible scheduling in fostering adaptability, with implications for enhancing online learning experiences.
This paper presents a quantitative exploration of the functionality of cost accounting systems and their determinants in social welfare organizations. We conducted a questionnaire survey of managers of social welfare organizations running special nursing homes for the elderly and conducted a cluster analysis based on the data collected. The questionnaire was created based on the scales used in previous studies, with some new scales developed. For data analysis, the statistical analysis environment R was used. The clValid package of R was used to assess the validity of the cluster analysis. Based on the results of the analysis in this paper, it is expected that social welfare organizations that pursue cost leadership strategies and have a strong public interest orientation will benefit greatly by being able to utilize a highly functional cost accounting system. Such organizations will be able to improve their business efficiency by utilizing cost information, and their social contribution activities based on the resulting resources will truly be a contribution to public welfare. The findings from this study are of practical significance because they can be used by business managers of social welfare organizations to review the functionality of their cost accounting systems. We also focus on the degree to which nonprofit organizations focus on social contribution activities (in this paper, we call this public interest orientation). The public interest orientation of an organization is thought to affect the functionality of the cost accounting system in the same way as the organization’s strategy, but there has not been enough quantitative research on this point. By focusing on the public interest orientation of social welfare organizations, this study contributes to deepening our knowledge in this area.
The present study attempted to assess the impact of fundamental ratios on the share prices of selected telecommunication companies in India. India has dramatically expanded over the past ten years to become the second-biggest telecoms market worldwide, with 1.17 billion users. The Indian telecom industry has proliferated thanks in part to the government of India’s liberal and reformist policies and strong customer demand. It has become a lucrative investment sector for investors due to its recent and prospective growth. Data on 13 telecom firms indexed in the S&P BSE telecommunication index from 2013 to 2022 were taken from companies’ annual reports, the BSE website (Bombay Stock Exchange), and other secondary sources. Six firm-specific fundamental factors viz. Debt to Equity ratio (D/E), Current ratio (CR), Total Assets Turnover ratio (ATR), Earnings per share (EPS), Price to earnings ratio (P/E), Return on equity (ROE), and three country-specific fundamental factors viz. Gross Domestic Product, Inflation rate, and S&P BSE Sensex return were considered. Fixed effect panel regression through Generalized Least Square (GLS) model was performed to find inferences. Debt Equity ratio and Inflation rate were found to impact share price negatively. Conversely, the Total Assets Turnover ratio (ATR), Earnings per share (EPS), Price to Earnings ratio (P/E), and Return on Equity (ROE) positively impacted selected companies’ share prices. The study results will benefit individual & institutional investors in formulating their investment and portfolio diversification strategies for gaining a high effective rate of return on their investments.
This research investigates the determinants of digital transformation among Vietnamese logistics service providers (LSPs). Employing the Technological-Organizational-Environmental framework and Resource Fit theory, the study identifies key factors influencing this process across different three stages: digitization, digitalization, digital transformation. Data from in-depth interviews with industry experts and a survey of 390 LSPs were analyzed using covariance-based structural equation modeling (CB-SEM). The findings reveal that the factors influencing the digital transformation of Vietnamese LSPs evolve across different stages. In the initial phase, information technology infrastructure, financial resources, employee capabilities, external pressures, and support services are key determinants. As digitalization progresses, leadership emerges as a crucial factor alongside the existing ones. In the final stage, the impact of these factors persists, with leadership and employee capabilities becoming increasingly important.
This article analyses the complex factors contributing to rising medical expenses, focusing on the senior citizen demographic in Malaysia. With the global aging population, notably in lower and middle-income countries, the study highlights the escalating medical and health insurance costs, driven by age, income source, modern healthcare, and geographical residence. The research draws on an extensive literature review, demographic analysis, and quantitative methods to examine these determinants. It critically analyzes Malaysia’s healthcare system, which operates on a dual-tier model, and the financial burden placed on senior citizens. The findings indicate that age, source of income, and geographical residence significantly influence medical expenses, whereas modern healthcare’s impact is not statistically significant. The study calls for government intervention, insurance industry adjustments, and private sector support to mitigate the financial strain on senior citizens. Recommendations include tax relief adjustments, National Health Insurance Scheme implementation, and employment sustainability for seniors. This research provides some recommendations to policymaking, the insurance industry, and academia by providing insights into managing the healthcare needs of an aging population sustainably.
Copyright © by EnPress Publisher. All rights reserved.