The Organic Rankine Cycle (ORC) is an electricity generation system that uses organic fluid instead of water in the low temperature range. The Organic Rankine cycle using zeotropic working fluids has wide application potential. In this study, data mining (DM) model is used for performance analysis of organic Rankine cycle (ORC) using zeotropik working fluids R417A and R422D. Various DM models, including Linear Regression (LR), Multi-Layer Perceptron (MLP), M5 Rules, M5 Model Tree, Random Committee (RC), and Decision Tree (DT) models are used. The MLP model emerged as the most effective approach for predicting the thermal efficiency of both R417A and R422D. The MLP’s predicted results closely matched the actual results obtained from the thermodynamic model using Genetron software. The Root Mean Square Error (RMSE) for the thermal efficiency was exceptionally low, at 0.0002 for R417A and 0.0003 for R422D. Additionally, the R-squared (R2) values for thermal efficiency were very high, reaching 0.9999 for R417A and R422D. The findings demonstrate the effectiveness of the DM model for complex tasks like estimating ORC thermal efficiency. This approach empowers engineers with the ability to predict thermal efficiency in organic Rankine systems with high accuracy, speed, and ease.
Introduction, purpose of the study: In Central Europe, in Hungary, the state guarantees access to health care and basic health services partly through the Semmelweis Plan adopted in 2011. The Health Plan aims to optimize and transform the health system. The objectives of hospital integration, as set out in the Plan, started with the state ownership of municipal hospitals in 2012, continued with the launch of integration processes in 2012–2013 and culminated today. The transformation of a health system can have an impact on health services and thus on meeting the needs of the population. We aim to study the effectiveness of integration through access to CT diagnostic testing. Our hypothesis is that integration has resulted in increased access to modern diagnostic services. The specialty under study is computed tomography (CT) diagnostic care. Our research shows that the number of people receiving CT diagnostic care has increased significantly because of integration, which has also brought a number of positive benefits, such as reduced health inequalities, reduced travel time, costs and waiting lists. Test material and method: Our quantitative retrospective research was carried out in the hospital of Kalocsa through document analysis. The research material was comparing two time periods in the Kalocsa site of Bács-Kiskun County, Southern Hungary. The number of patients attending CT examinations by area of duty of care according to postal codes was collected: Pre-integration period 2014.01.01–2017.11.30. (Kalocsa did not have CT equipment, so patients who appeared in Kecskemét Hospital but were under the care of Kalocsa), post-integration period 2017.12.01–2019.12.31. (period after the installation of CT in Kalocsa). The target group of the study consisted of women and men together, aged 0–99 years, who appeared for a CT diagnostic examination. The study sample size was 6721 persons. Linear regression statistics were used to evaluate the results. Based on empirical experience, a SWOT analysis was carried out to further investigate the effectiveness of integration. Results: As a result of the integration, the CT scan machine purchased in the Kalocsa District Hospital has enabled an average of 129.7 patients per month to receive CT scans on site without travelling. The model used is significant, explaining 86% of the change in the number of patients served (F = 43.535; p < 0.001, adjusted R2 = 0.860). The variable of integration in the model is significant, with an average increase in the number of patients served of 129.7 per month (t = 22.686; p < 0.001) following the introduction of CT due to integration. None of the month variables representing seasonal effects were found to be significant, with no seasonal effect on care. The SWOT analysis has clearly identified the strengths, weaknesses, opportunities and threats related to the integration, the main outcome of which is the acquisition of a CT diagnostic tool. Conclusions: Although we only looked at one segment of the evidence for the effectiveness of hospital integration, integration in the study area has had a positive impact on CT availability, reducing disparities in care.
2050 building stock might be buildings that already exist today. A large percentage of these buildings fail today’s energy performance standards. Highly inefficient buildings delay progress toward a zero-carbon-building goal (SDGs 7 and 13) and can lead to investments in renewable energy infrastructure. The study aims to investigate how bioclimatic design strategies enhance energy efficiency in selected orthopaedic hospitals in Nigeria. The study objective includes Identifying the bioclimatic design strategies that improve energy efficiency in orthopaedic hospitals, assessing the energy efficiency requirements in an orthopaedic hospital in Nigeria and analysing the effects of bioclimatic design strategies in enhancing energy efficiency in an orthopaedic hospital in Nigeria. The study engaged a mixed (qualitative and quantitative) research method. The investigators used case study research as a research design and a deductive approach as the research paradigm. The research employed a questionnaire survey for quantitative data while the in-depth Interview (IDI) guide and observation schedule for qualitative data. The findings present a relationship between bioclimatic design strategies and energy conservation practices in an orthopaedic hospital building. Therefore, implementing bioclimatic design strategies might enhance energy efficiency in hospital buildings. The result of the study revealed that bioclimatic hospital designs may cost the same amount to build but can save a great deal on energy costs. Despite the challenges, healthcare designers and owners are finding new ways to integrate bioclimatic design strategies into new healthcare construction to accelerate patient and planet healing.
In the current work, it was investigated to the K X-ray fluorescence efficiency and chemical effect on vacancy transfer probability for some tin compounds. We used Br2Tin, TinI2, SeTin, TinF2, TinSO4, TinCl2, TinO and TinS compounds for experimental study. The target samples were irradiated with 241Am annular radioactive source at the intensity of 5 Ci which emits gamma rays at wavelength of 0.2028 nm. The characteristic x-rays emitted because of the excitation are collected by a high-resolution HPGe semiconductor detector. It has been determined that the experimental calculations of the tin (Sn) element are compatible with the theoretical calculation. In addition, we have calculated the experimental intensity ratios, fluorescence yields and total vacancy transfer probabilitiesfor other Sn compounds.
Copyright © by EnPress Publisher. All rights reserved.