Sustainability has become a generalized concern for society, specifically businesses, governments, and academia. In the specific case of universities, sustainability has been approached from different perspectives, some viewing it from environmental practices, management initiatives, operational criteria, green buildings, and even education for sustainable development. This research focuses on sustainability as a managerial practice and investigates how it affects the performance of five private universities in Medellin, Colombia. For this purpose, a literature review using a mixed sequential approach, including bibliometric and content analysis, was initially conducted. In the s second phase, more than 5000 responses from students, professors, and employees of the five mentioned private universities were collected. A previously validated instrument for both sustainability and performance was applied in the quantitative phase, and a novel dimensionality of the constructs was proposed by conducting an exploratory factor analysis using the SPSS software. Results were then processed through a structural equation analysis with the Smart PLS software. The impact of sustainability on university performance is verified, making some managerial recommendations.
Research has shown that understanding the fundamental of public support for carbon emission reduction policies may undermine policy formulation and implementation, yet the direction of influence and the transmission mechanism remain unclear. Using data from using data from 1482 questionnaires conducted in Hangzhou, China, this paper has examined a comprehensive model of the factors and paths influencing public support for carbon emission reduction policies, and evaluated the determinants and predictors of policy support regarding individual psychological perceptions, social-contextual perceptions, and perceptions of policy features. The results show that the variables in both the individual psychological perception and social contextual perception dimensions have no significant effect on carbon tax, however, be important constructure in carbon trading; in the policy characteristics perception dimension, both variables have a significant positive effect on both carbon tax and carbon trading, and are also the strongest predictors of policy support for carbon policies. Further evidence suggests that future policies could be more acceptable to residents by strengthening their environmental values, social norms can further arouse residents’ social responsibility to care about climate, and whether the policy is effective or fair to help residents realize the importance of the policy as well as the need for their participation and willingness to dedicate themselves to the mitigation of climate change.
The Consumer Price Index (CPI) is a vital gauge of economic performance, reflecting fluctuations in the costs of goods, services, and other commodities essential to consumers. It is a cornerstone measure used to evaluate inflationary trends within an economy. In Saudi Arabia, forecasting the Consumer Price Index (CPI) relies on analyzing CPI data from 2013 to 2020, structured as an annual time series. Through rigorous analysis, the SARMA (0,1,0) (12,0,12) model emerges as the most suitable approach for estimating this dataset. Notably, this model stands out for its ability to accurately capture seasonal variations and autocorrelation patterns inherent in the CPI data. An advantageous feature of the chosen SARMA model is its self-sufficiency, eliminating the need for supplementary models to address outliers or disruptions in the data. Moreover, the residuals produced by the model adhere closely to the fundamental assumptions of least squares principles, underscoring the precision of the estimation process. The fitted SARMA model demonstrates stability, exhibiting minimal deviations from expected trends. This stability enhances its utility in estimating the average prices of goods and services, thus providing valuable insights for policymakers and stakeholders. Utilizing the SARMA (0,1,0) (12,0,12) model enables the projection of future values of the Consumer Price Index (CPI) in Saudi Arabia for the period from June 2020 to June 2021. The model forecasts a consistent upward trajectory in monthly CPI values, reflecting ongoing economic inflationary pressures. In summary, the findings underscore the efficacy of the SARMA model in predicting CPI trends in Saudi Arabia. This model is a valuable tool for policymakers, enabling informed decision-making in response to evolving economic dynamics and facilitating effective policies to address inflationary challenges.
Copyright © by EnPress Publisher. All rights reserved.