The present work shows an application of the Chan-Vese algorithm for the semi-automatic segmentation of anatomical structures of interest (lungs and lung tumor) in 4DCT images of the thorax, as well as their three-dimensional reconstruction. The segmentation and reconstruction were performed on 10 CT images, which make up an inspiration-expiration cycle. The maximum displacement was calculated for the case of the lung tumor using the reconstructions of the onset of inspiration, the onset of expiration, and the voxel information. The proposed method achieves appropriate segmentation of the studied structures regardless of their size and shape. The three-dimensional reconstruction allows us to visualize the dynamics of the structures of interest throughout the respiratory cycle. In the future, it is expected to have more evidence of the good performance of the proposed method and to have the feedback of the clinical expert, since the knowledge of the characteristics of anatomical structures, such as their dimension and spatial position, helps in the planning of Radiotherapy (RT) treatments, optimizing the radiation dose to cancer cells and minimizing it in healthy organs. Therefore, the information found in this work may be of interest for the planning of RT treatments.
The temporomandibular joint (TMJ) is considered a bicondylar diarthrosis type joint. Imaging evaluation is a fundamental part of its assessment, which should include both bony and soft tissue characteristics and the relationship between them. Magnetic resonance imaging (MRI) represents the gold standard for the study of soft tissues; however, up to now, its main application continues to be the visualization of the articular disc. For this reason, the present article aimed to point out the information available in the literature regarding the visualization of the joint capsule in MRI and to evaluate it as an independent structure.
Imaging technology plays a key role in guiding endovascular treatment of aortic aneurysm, especially in the complex thoracoabdominal aorta. The combination of high quality images with a sterile and functional environment in the surgical suite can reduce contrast and radiation exposure for both patient and operator, in addition to better outcomes. This presentation aims to describe the current use of this technique, combining angiotomography and intraoperative cone beam computed tomography, image “fusion” and intravascular ultrasound, to guide procedures and thus improve the intraoperative success rate and reduce the need for reoperation. On the other hand, a procedure is described to create customized 3D templates with the high-definition images of the patient’s arterial anatomy, which serve as specific guides for making fenestrated stents in the operating room. These customized fenestration templates could expand the number of patients with complex aneurysms treated minimally invasively.
Objective: To evaluate the imaging features of spondyloarthritis on magnetic resonance imaging (MRI) of the sacroiliac (SI) joints in terms of topography (in thirds) and affected margin, since this aspect is rarely addressed in the literature. Methods: Cross-sectional study with MRI (1.5 T) evaluation of the SI in 16 patients with diagnosis of axial spondyloarthritis regarding the presence of acute (subchondral bone edema, enthesitis, synovitis and capsulitis) and chronic changes (erosions, subchondral bone sclerosis, bone bridging and fatty replacement), performed by two radiologists, blinded to clinical data. MRI findings were correlated with clinical data including age, disease duration, medications, HLA-B27, BASDAI, ASDAS-VHS and ASDAS-PCR, BASMI, BASFI, and mSASSS. Results: Bone edema pattern and erosions showed predominance in the upper third of SI (p = 0.050, p = 0.0014, respectively). There was a correlation between the time of disease and structural changes by affected third (p = 0.028-0.037), as well as the presence of bone bridges with BASMI (p = 0.028) and mSASSS (p = 0.014). Patients with osteitis of the lower third had higher ASDAS values (ESRV: p = 0.011 and CRP: p = 0.017). Conclusion: Chronic inflammatory changes and the pattern of bone edema predominated in the upper third of the SI, but there was also concomitant involvement of the middle or lower thirds of the joint. The localization of involvement in the upper third of the SI was insufficient to differentiate between degeneration and inflammation.
Introduction: Chest trauma has a high incidence and pneumothorax is the most frequent finding. The literature is scarce on what to do with asymptomatic patients with pneumothorax due to penetrating chest trauma. The aim of this study was to evaluate what are the findings of the control radiography of patients with penetrating chest trauma who are not initially taken to surgery, and their usefulness in determining the need for further treatment. Methods: A retrospective cohort study was performed, including patients older than 15 years who were admitted for penetrating chest trauma between January 2015 and December 2017 and who did not require initial surgical management. We analyzed the results of chest radiography, the time of its acquisition, and the behavior decided according to the findings in patients initially left under observation. Results: A total of 1,554 patients were included, whose average age was 30 years, 92.5% were male and 97% had a sharp weapon wound. Of these, 186 (51.5%) had no alterations in their initial X-ray, 142 had pneumothorax less than 30% and 33 had pneumothorax greater than 30 %, hemopneumothorax or hemothorax. Closed thoracostomy was required as the final procedure in 78 cases, sternotomy or thoracotomy in 2 cases and discharged in 281. Conclusion: In asymptomatic patients with small or moderate pneumothorax and no other significant lesions, longer observation times, radiographs and closed thoracostomy may be unnecessary.
Background: Through the development of robust techniques and their comprehensive validation, cardiac magnetic resonance imaging (CMR) has developed a wide range of indications in its almost 25 years of clinical use. The recording of cardiac volumes and systolic ventricular function as well as the characterization of focal myocardial scars are now part of standard CMR imaging. Recently, the introduction of accelerated image acquisition technologies, the new imaging methods of myocardial T1 and T2 mapping and 4-D flow measurements, and the new post-processing technique of myocardial feature tracking have gained relevance. Method: This overview is based on a comprehensive literature search in the PubMed database on new CMR techniques and their clinical application. Results and conclusion: This article provides an overview of the latest technical developments in the field of CMR and their possible applications based on the most important clinical questions.
Copyright © by EnPress Publisher. All rights reserved.