Nationwide integration of AI into the contemporary art sector has taken place since government AI regulations in 2023 to promote AI use. China’s AI integration into industry is ‘ahead’ of other countries, meaning that other countries can learn from these creative professionals. Consequently, contemporary visual artists have devised arts-led sustainable AI solutions to overcome global AI concerns. They are now putting these solutions into practice to maintain their jobs, arts forms, and industry. This paper draws on 30 interviews with contemporary visual artists, and a survey with 118 professional artists from across China between 2023 and 2024. Findings show that 87% use AI and 76% say AI is useful and they will continue to use AI into the future. Findings show professionals have had time to find DIY, bottom-up solutions to AI concerns, including (1) building strong authorship practices, identity, and brand, (2) showing human creativity and inner thinking, (3) gaining a balanced independent position with AI. They want AI regulations to liberalise and promote AI use so they can freely experiment and develop AI. These findings show how humans are directing the use of AI, altering current narratives on AI-led impacts on industry, jobs, and human creativity.
This study aims to explore the research on Chinese higher education policy from 2005 to 2024 through a bibliometric analysis. It is revealed that a continuous growth trend and sustained academic interest in this field. Mainland China leads in publication quantity, showcasing the active involvement of Chinese scholars in higher education policy research. Institutions like Peking University, the University of Hong Kong, and Beijing Normal University play significant roles in this research domain. The focus of research has shifted from student attitudes to international students, teachers, innovation models, changing demands, and urban education development, reflecting a growing emphasis on sustainability and internationalization. The study highlights the positive development trajectory of Chinese higher education policy research, with expanding research focuses and deepening concerns for sustainability and internationalization.
In the face of growing disruptions within the unconventional business environment, this study focuses on enhancing supply chain resilience through strategically reforming resources. It highlights the importance of understanding the dynamics and interactions of resources to tackle supply chain vulnerability (SCV) in the manufacturing sector. Employing the Decision-Making Trial and Evaluation Laboratory (DEMATEL) methodology alongside an adapted Analytic Network Process (ANP), the research investigates supply chain vulnerabilities in Pakistan’s large-scale manufacturing (LSM) public sector firms. The DANP method, through expert questionnaires, helps validate a theoretical framework by assessing the interconnectedness of supply chain readiness dimensions and criteria. Findings underscore Resource Reformation (RR) as a critical dimension, with the positive restructuring of resources identified as pivotal for public sector firms to align their operations with disruption magnitudes, advocating for a detailed analysis of resource utilization.
Universities play a key role in university-industry-government interactions and are important in innovation ecosystem studies. Universities are also expected to engage with industries and governments and contribute to economic development. In the age of artificial intelligence (AI), governments have introduced relevant policies regarding the AI-enabled innovation ecosystem in universities. Previous studies have not focused on the provision of a dynamic capabilities perspective on such an ecosystem based on policy analysis. This research work takes China as a case and provides a framework of AI-enabled dynamic capabilities to guide how universities should manage this based on China’s AI policy analysis. Drawing on two main concepts, which are the innovation ecosystem and dynamic capabilities, we analyzed the importance of the AI-enabled innovation ecosystem in universities with governance regulations, shedding light on the theoretical framework that is simultaneously analytical and normative, practical, and policy-relevant. We conducted a text analysis of policy instruments to illustrate the specificities of the AI innovation ecosystem in China’s universities. This allowed us to address the complexity of emerging environments of innovation and draw meaningful conclusions. The results show the broad adoption of AI in a favorable context, where talents and governance are boosting the advance of such an ecosystem in China’s universities.
Humanity is currently facing several global problems, such as global warming, air pollution, water pollution, deforestation, desertification, and land degradation, which are connected to the consequences of negative human activity. One of the possible and effective institutional tools for environmental protection is the environmental education of the general population. It is a relatively well-known and used environmental protection policy tool that governments of all developed countries have in their instrument mix. This qualitative analysis assigned itself the task of investigating whether the ability of environmental education can be affected by certain neuropsychological diseases in addition to thinking about the psychology of environmental education at large. To fulfill this main task, the authors asked themselves the following research questions: 1st—Is pedagogical psychology identical and applicable in the case of environmental education? And 2nd—What effect do some neuropsychological disorders have on the ability of environmental education? Based on the study, analysis, selection, and comparison of current professional scientific works obtained from the research activities of current researches on this topic, it is possible to accept the premise that the psychology of environmental education is basically the same as the general psychology of education and that neuropsychological diseases do indeed affect the ability of environmental education similarly to scholarly education. The main benefit of this qualitative review is the originality of the survey. There are no relevant and credible publications on the chosen topic, i.e., on the influence of selected neuropsychological diseases on the ability of environmental education of the population, to be found in the representative databases. Due to the importance of environmental education of the population, as one of the basic tools of environmental protection, the knowledge gained can gradually be incorporated into the politics, psychology, and didactics of education, to improve the technique of environmental education.
Eco-friendly and greener barrier materials are required to replace the synthetic packaging materials as they produce a threat to environment. These can be fabricated by natural polymers such as cellulose nanofiber (CNF). The sustainability of CNF was so amazing due to its potential for circular economy and provides alternative platform for synthetic plastics. The challenging task to fabricate CNF films still existed and also current methods have various limitations. CNF films have good oxygen permeability and the value was lower than synthetic plastics. However, CNF films have poor water vapour permeability and higher than that of synthetic plastics. The fabrication method is one of strong parameters to impact on the water permeability of CNF films. The deposition of CNF suspension on the stainless-steel plate via spraying, is a potential process for fabrication for CNF films acting as barrier material against water vapour. In spraying process, the time required to form CNF films in diameter of 15.9 cm was less than 1 min and it is independent of CNF content in the suspension. The uniqueness of CNF films via the spraying process was their surfaces, such as rough surface exposed to air and smooth surface exposed to stainless steel. Their surfaces were investigated by SEM, AFM and optical profilometry micrographs, confirming that the smooth surface was evaluated notable lower surface roughness. The spray coated surface was smooth and glossy and its impact on the water vapor permeability remains obscure. The spraying process is a flexible process to tailor the basis weight and thickness of CNF films can be adjusted by the spraying of CNF suspension with varying fibre content. The water vapour permeability of CNF films can be tailored via varying density of CNF films. The plot between water vapour transfer rate (WVTR)/water vapour and density of CNF films has been investigated. The WVP of spray coated CNF films varied from 6.99 ± 1.17 × 10−11 to 4.19 ± 1.45 × 10−11 g/m.s.Pa. with the density from 664 Kg/m3 to 1,412.08 Kg/m3. The WVP of CNF films achieved with 2 wt% CNF films (1,120 Kg/m3) was 3.91 × 10−11 g/m.s.Pa. These values were comparable with the WVP of synthetic plastics. Given this correspondence, CNF films via spraying have a good barrier against water vapour. This process is a potential for scale up and commercialization of CNF films as barrier materials.
Copyright © by EnPress Publisher. All rights reserved.