The integration of Big Earth Data and Artificial Intelligence (AI) has revolutionized geological and mineral mapping by delivering enhanced accuracy, efficiency, and scalability in analyzing large-scale remote sensing datasets. This study appraisals the application of advanced AI techniques, including machine learning and deep learning models such as Convolutional Neural Networks (CNNs), to multispectral and hyperspectral data for the identification and classification of geological formations and mineral deposits. The manuscript provides a critical analysis of AI’s capabilities, emphasizing its current significance and potential as demonstrated by organizations like NASA in managing complex geospatial datasets. A detailed examination of selected AI methodologies, criteria for case selection, and ethical and social impacts enriches the discussion, addressing gaps in the responsible application of AI in geosciences. The findings highlight notable improvements in detecting complex spatial patterns and subtle spectral signatures, advancing the generation of precise geological maps. Quantitative analyses compare AI-driven approaches with traditional techniques, underscoring their superiority in performance metrics such as accuracy and computational efficiency. The study also proposes solutions to challenges such as data quality, model transparency, and computational demands. By integrating enhanced visual aids and practical case studies, the research underscores its innovations in algorithmic breakthroughs and geospatial data integration. These contributions advance the growing body of knowledge in Big Earth Data and geosciences, setting a foundation for responsible, equitable, and impactful future applications of AI in geological and mineral mapping.
This study investigates the utilization of artificial intelligence (AI) technology to enhance practical content development within the media specialization program at Palestine Technical University, Kadoorie. The primary objective is to examine the extent to which media specialty lecturers employ AI technology in developing practical content. A mixed-methods approach is employed, qualitative data are gathered through in-depth interviews with faculty members to elucidate their perceptions and experiences regarding the integration of AI technology in practical content development. The study aims to provide valuable insights into the benefits and challenges of AI integration in practical content development for media specialization programs The study reveals diverse views on AI integration in media education at Palestine Technical University, Kadoorie. Faculty recognize AI’s benefits like personalized learning and productivity but also express concerns about over-reliance and ethics. Consensus exists on cautious AI implementation to maximize benefits and address drawbacks. Obstacles to AI adoption include cost, skills gaps, and ethical considerations, highlighting the complexity of integration. The study emphasizes a balanced approach, offering insights for enhancing practical content development in media specialization programs at Palestine Technical University, Kadoorie.
The development of artificial intelligence (AI) and 5G network technology has changed the production and lifestyle of people. AI also has promoted the transformation of talent training mode under the integration of college industry and education. In the context of the current transformation of education, AI and 5G networks are increasingly used in the education industry. This paper optimizes and upgrades the training mode of skilled talents in higher vocational colleges by using its advanced methods and technologies of information display. This means is helpful to analyze and solve a series of objective problems such as the single training form of the current talent training mode. This paper utilizes the principles and laws of industry university research (IUR) collaboration for reference to construct and optimize the talent training mode based on the analysis of the requirements of talent training and the role of each subject in talent training. Then, the ecological talent training environment can be realized. In the analysis of talent training mode under the cooperation of production and education, the correlation coefficients of network construction, environment construction, scientific research funds, scientific research level, and policy support were 0.618, 0.576, 0.493, 0.785, and 0.451, respectively. This showed that the scientific research level had the greatest impact on talent training in the talent training mode of IUR collaboration, while policy support had less impact on talent training compared with other factors. The combination of AI and 5G network technology with the talent training mode of IUR cooperation can effectively analyze the influencing factors and problems of the talent training mode. The hybrid method is of great significance to the talent training strategy and fitting degree.
This paper aims to contribute with a literature review on the use of AI for cleaner production throughout industries in the consideration of AI’s advantage within the environment, economy, and society. The survey report based on the analysis of research papers from the recent literature from leading database sources such as Scopus, the Web of Science, IEEE Xplore, Science Direct, Springer Link, and Google Scholar identifies the strategic strengths of AI in optimizing the resources, minimizing the carbon footprint and eradicating wastage with the help of machined learning, neural networks and predictive analytics. AI integration presents vast aspects of environmental gains, including such enhancements as a marked reduction concerning the energy and materials consumed along with enhanced ways of handling the resulting waste. On the economic aspect, AI enhances the processes that lead to better efficiency and lower costs in the market on the other hand, on the social aspect, the application of any AI influences how people are utilized as workers/clients in the community. The following are some of the limitations towards AI adoption as proposed by the review of related literature; The best things that come with AI are yet accompanied by some disadvantages; there are implementation costs, data privacy, as well as system integration that may be a major disadvantage. The review envisages that with the continuation of the AI development in the following years, the optic is going to be the accentuation on the enhancement of the process of feeding the data in real-time mode, IoT connections, and the implementation of the proper ethical approaches toward the AI launching for all segments of the society. The conclusions provide precise suggestions to the people working in the industry to adopt the AI advancements appropriately and at the same time, encourage the lawmakers to create favorable legal environments to enable the ethical uses of AI. This review therefore calls for more targeted partnerships between the academia, industry, and government to harness the full potential of AI for sustainable industrial practices worldwide.
Despite the surge of publication of chatbots in the recent years in the field of education, we have little to know how this area has been researched so far, and the metrics of this type of research is still not known. To address such gap, this article offers a descriptive bibliometric study of chatbot research in education, aiming at presenting bibliometric analysis on articles on chatbots in education that were published in journals indexed in the Web of Science (WOS) database specifically Social Science Citation Index (SSCI) and Science Citation Index Expanded (SCIE) between 2016 and 2023. Descriptive bibliometric analysis was used to examine the data gathered from the chosen publications. including the annual number of articles and citations, the most productive author, countries with the highest publication output, productive affiliations, funding organizations, and publication sources. The bulk of the articles on chatbots in education, according to our dataset, were published between 2016 and 2023. The United States of America tops the list of countries regarding research productivity. The United Kingdom and China were ranked as most second and third productive countries, in terms of publication outputs. “Luke Kutszik Fryer emerged as the most productive author in this research domain in terms of the number of publications.” The University of Hong Kong had the highest number of publications among affiliations, indicating their significant contribution to the field. Additionally, the journal “Computers in Human Behavior” stood out with the highest number of publications per year, highlighting its relevance in publishing research on chatbots in education. This research offers valuable insights and a roadmap for prospective researchers, pinpointing critical areas where success can be attained in the study of chatbots in education.
The digital era has ushered in significant advancements in Generative Artificial Intelligence (GAI), particularly through Generative Models and Large Language Models (LLMs) like ChatGPT, revolutionizing educational paradigms. This research, set against the backdrop of Society 5.0 and aimed at sustainable educational practices, utilizes qualitative analysis to explore the impact of Generative AI in various learning environments. It highlights the potential of LLMs to offer personalized learning experiences, democratize education, and enhance global educational outcomes. The study finds that Generative AI revitalizes learning methodologies and supports educational systems’ sustainability by catering to diverse learning needs and breaking down access barriers. In conclusion, the paper discusses the future educational strategies influenced by Generative AI, emphasizing the need for alignment with Society 5.0’s principles to foster adaptable and sustainable educational inclusion.
Copyright © by EnPress Publisher. All rights reserved.